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1. Introduction. The Lanczos algorithm [21] is widely appreciated in the numerical

analysis community [6, 7, 8, 14, 15, 17, 22, 28, 29, 31, 34, 36] as a very powerful tool for

extracting some of the extreme eigenvalues of a real symmetric matrix H, i.e. to find the

largest and/or smallest eigenvalues and vectors of the symmetric eigenvalue problem

gx _ ,_x.

However, the usefulness of the algorithm is often misunderstood. It is often believed, for

example, that the algorithm can be used directly to find the eigenvalues at both ends of the

spectrum (both largest and smallest in value). In fact, many applications result in eigenvalue

distributions that only allow effectively extracting the eigenvalues at one end of the spectrum.

For example, the smallest eigenvalues are usually the ones of interest in structural engineering

vibration problems. Typical eigenvalue distributions in these problems have small eigenvalues

of order unity with separations I_i+x - )_1 also of order unity, apparently well-separated.

However, for physical reasons the largest eigenvalues of these problems are very large, say

O(101°). The convergence rates for the eigenvalues is determined primarily by the relative

separation _ which for the smallest eigenvalues is O(10-1°). We expect to see and do

find very slow convergence to the small eigenvalues. The fundamental characteristic that is

usually ignored is the dependence of convergence on relative separation between eigenvalues.
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When the eigenvaJuesat oneend aremuchclosertogether than the eigenvaluesat the other

end, only the eigenvalues at the well-separated end converge at a reasonable rate.

It is also often believed that the Lanczos algorithm can be applied to the generalized

symmetric problem

Hx = $Mx

by using the naive reduction to standard form [16, 31]: factor M into its Cholesky decompo-

sition M = LL T and then solve the ordinary eigenproblem L-1HL-Ty = _y. Suppose that

we applied this algorithm to the vibration problem of structural engineering,

(1) Kx = AMx,

where K is the stiffness matrix and M is the mass matrix. We would fail abysmally for three

separate reasons:

• M is very often semi-definite -- it may admit no Cholesky factorization.

• even when M can be factored, typically the eigenvalues that are desired are the

smallest, but they are very badly separated.

• the eigenvectors x must be computed by a back transformation x = L-Ty. When

it exists L is usually poorly conditioned, which can lead to considerable numerical

error in the back transformation.

When K is positive definite, the vibration problem can be addressed by applying the

usual reduction to the reciprocal problem:

1

(2) Kx = _Mx ¢* Mx = _Kx ¢:_ L-1ML-Ty = #y,

1 Often this is sufficient as a cure forwhere L is the Cholesky factor of K and # = 5"

the first two problems in (1), because the reciprocals of the eigenvalues are well-separated.

Eigenanalysis codes in structural engineering packages [23, 26] have been built upon this

transformation. However, it still suffers from the third problem. More importantly, this

transformation is still inadequate in the following circumstances:

• the model has rigid body modes -- K is positive semi-definite and has no Cholesky

decomposition.

• a considerable number of eigenvalues are desired.

• the eigenvalues wanted are not the smallest eigenvalues.

The second and third problems are essentially the same, in that the Lanczos algorithm

normally does not compute good approximations to interior eigenvalues until it has computed

all the eigenvalues between the interior eigenvalues and the nearest end of the spectrum.

Applications with these characteristics do arise. For example, structures with rigid

body modes are common in aerospace applications -- the rigid body modes correspond to

the fact that the structure, say an airplane, is free to translate or rotate in space without

affecting the vibration analysis. The stiffness matrix typically has a six-dimensional nullspace

of rigid body modes. Detailed analyses of structures may require more than just a few

eigenvalues and vectors. One of the test problems used here is an analysis of a nuclear

reactor containment floor, where more than 200 eigenpairs were needed to adequately model
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the response of the s_ructure to a simulated earthquake. Another problem we have analyzed

is a model of a large industrial ventilating fan mounted on a large concrete platform. The real

physical structure resonated at the normal operating speed of the fan. Corrective measures

depended on getting good approximations to the eigenvalues near the fan's rotational rate,

eigenvalues that are in the interior of the spectrum. (Blindly applying standard engineering

fixes to this particular problem would have created a newsworthy catastrophe.)

There is a more elaborate transformation of the problem, the spectral transformation

of Ericsson and Ruhe [14], which is capable of treating all of these difficulties. The spec-

tral transformation is discussed in detail in §2, where we discuss extension of the standard

algorithm to buckling as well as vibration problems. The general idea behind the spectral

transformation comes from considering the shifted problem (K - aM)x -- (A - a)Mx. If

we invert (K - aM) we transform the eigenvalues nearest the shift a into the largest and

well-separated eigenvalues of the reciprocal problem. Normally we need only to choose a

shift a near the eigenvaiues we want. When the number of eigenvalues is large, the reduced

convergence rate of the eigenvalues farthest from a makes it worthwhile to choose additional

shifts (and factorizations) in order to search through the spectrum.

Formally the only key characteristic of the shift a is that it is not allowed to be equal

to an eigenvalue of the problem. In such a case the shifted operator is singular. It is

probably impossible to determine numerically that the operator in singular. In fact, avoiding

singularity is an issue for the choice of shifts, but it can be confined mostly to the choice of

the very first shift. The choice of the initial shift is an interesting problem; it is discussed in

§3.4.

In general, a well-chosen shift allows us to compute tens of eigenvalues with a single

Lanczos run. A poorly chosen shift may only be useful for computing a single cluster of

eigenvalues or perhaps no interesting eigenvalues at all. In addition, there is a complicated

tradeoff between the cost of a Lanczos run, which increases nonlinearly with increasing

numbers of steps, and the cost of computing a new shift and its concomitant factorization. As

an example, we consider the oceanography model (matrix PLAT1919 in the Harwell/Boeing

sparse matrix collection [11], with four different paradigms for choosing shifts:

• the heuristic described in this paper;

• a conservative modification of this heuristic;

• an aggressive modification of this heuristic;

• no shifting - attempting to compute all 200 eigenvalues with a single factorization.

The following table contains the salient results for these choices, demonstrating the virtues

of carefully choosing shifts. The shift factor, normally two, is described in §3.2; it is the

multiplier applied to k or to _ in obtaining the next shift. All of these analyses begin with

a Lanczos run applied to the matrix A - .0001I.

(These results were obtained on a Sun 4/490 workstation. The code used a blocksize of five.

Execution cost is the sum of cpu and i/o processor seconds.)

Shifting can provide reliability as well as efficiency. Each factorization provides eigen-

value location information in the form of matrix inertias (see §3.1). The collected inertias

from a series of well-chosen shifts can provide an independent guarantee on the success of

the eigenvalue computation. Alternately, the inertia information can be used to drive the



TABLE 1

Computing the 200 Lowest Eigenvalues in [.0001, .24] of PLAT1919

choice shift

of shift factor

normal 2.0 8

conservative 1.0 13

aggressive 3.0 6

no shifting 1

number of total number of execution

Lanczos runs Lanczos steps cost

145

187

131

318

317

418

323

6637

choice of further shifts and Lanczos runs to ensure that all of the desired eigenvalues have

been computed. A well-designed strategy for choosing shifts can lead to an algorithm that

is both robust and efficient. Our heuristic strategy for choosing shifts is discussed in §3.

Our goal is a code that can serve as a "black-box" eigenextraction routine in large

applications codes. As such, there are at least two additional problems that must be faced

at the outset. First, eigenvalues cannot be assumed to be simple. Multiple eigenvalues are

common in a number of applications. We use in our test suite three problems, all captured

from real applications, which have multiple eigenvalues in configurations ranging from a few

doubletons and triples to all eigenvalues appearing in pairs to several very large clusters

of equal eigenvalues. Rigid body modes usually occur as a cluster of six zero eigenvalues.

The code must be prepared for such situations. Our approach is three-fold. First, our

shifting strategy is prepared to continue looking at a small piece of the spectrum until it has

determined the full multiplicity of the eigenvalues therein. Second, the shifting scheme and

the Lanczos algorithm interact to ensure that we find an orthogonal basis for the invariant

subspace for each cluster (see §4.3.3). Most importantly, we use a block version of the

Lanczos algorithm. Provided that we have been able to choose a block size as large as the

largest multiplicity of any cluster we will encounter, we expect that the Lanczos algorithm

will compute the full multiplicities of each cluster without any intervention from the shifting

strategy.

The block Lanczos algorithm also handily addresses another difficulty posed by its use

inside applications codes. Applications codes often use general representations for their data,

even when particular machine architectures would allow or favor alternatives. Even with the

increases in main memory over the last decade it is common for general applications codes

to represent their matrices as "out-of-core". As such there is a considerable cost in accessing

a matrix. The block Lanczos code substitutes, almost on a one for one basis, matrix-block

multiplies and block solves for matrix-vector products and simple solves. The effect is to

decrease the input/output cost essentially by the block size.

Our production eigenextraction code is a synthesis of the ideas of the spectral transfor-

mation and the block Lanczos algorithm. Following this introduction we present the details

of the spectral transformation and of the block Lanczos algorithm. In §2 we begin to address

the effects of the generalized problem on the recurrence. We explain how to form the shifted

and inverted operators for both vibration and buckling analysis, and what modifications to

the Lanczos recurrence result. With the exception of the development of a spectral trans-



formation for buckling problems,our presentation is quite standard and is provided for the

reader not already familiar with these results.

With these basic tools in hand, we present our heuristic shifting strategy in §3. There

are eight subsections: a discussion of trust intervals and matrix inertias, our basic tools for

robustness; our heuristic for choosing a shift in a generic case; the idea of sentinels, a tool

for ensuring orthogonality of invariant subspaces; our heuristics for choosing an initial shift;

our heuristics for determining how to expand the primary trust interval; our treatment of

various special and pathological cases; and last, the modifications needed for the buckling

problem.

The special characteristics of our block Lanczos algorithm are discussed in §4. This

considers the effects due to the spectral transformation. One major problem is that vectors

must be orthonormalized with respect to an inner product defined by a positive definite

matrix M. Although M-orthogonality represents little difficulty in theory, the setting of these

problems requires more thought. A discussion of the issues associated with implementing

M-orthonormalization of vectors in the basic block Lanczos algorithm is given in §4.1, as

are the further precautions needed to allow cases where M induces only a semi-norm.

The block Lanczos recurrence by itself produces only a block tridiagonal matrix T. In

§4.2 we describe how to compute eigenvalue and vector approximations, and error bounds

on these approximations, from T and the Lanczos vectors. §4.3 contains our approach

for dealing with the effects of finite precision arithmetic, and particularly for addressing

the loss of orthogonality in the Lanczos vectors. Here we present a novel combination of

various reorthogonalization schemes, which are combined to work effectively with the unusual

distributions of eigenvalues that result from the spectral transformation. §4 concludes with

discussions of when to end and how to start the recurrence. The integration of all of these

techniques provides a block Lanczos recurrence that will effectively find a limited number of

eigenvalues and corresponding eigenvectors of a spectrally transformed operator.

We close with a summary of the environment used in our numerical experiments and

discussions of the overall behavior of our code on a small set of eigenproblems obtained from

applications codes.

2. The Spectral Transformation Block Lanczos Algorithm. The eigenvalue prob-

lem in vibration analysis is given as

(3) Kx = _Mx,

where K and M are symmetric matrices, and M is positive semidefinite. Usually only the

smallest eigenvalues of (3) are wanted. Although these lie at one end of the spectrum, they

are commonly very poorly separated. In a typical distribution of eigenvalues in a vibration

problem, the interesting eigenvalues have very poor relative separation, rarely better than

O(10-s). At the same time, the largest eigenvalues, which are uninteresting, have very good

separation. A priori estimates for the rate of convergence predict very slow convergence at

the desired end of the spectrum and fast convergence at the other end, both of which are

observed in practice. We can obtain rapid convergence to the desired eigenvalues by using

the spectral transformation [14, 26] of (3).



2.1. The Spectral Transformation for Vibration Problems. Consider the prob-

lem

(4) M(K - ¢M)-IMx = pMx,

where a, the shift, is a real parameter. Assume for the moment that M is positive definite;

the complications introduced by a semidefinite M will be discussed later. It is easy to verify
1 Xthat (A,x) is an eigenpair of (3) if and only if (x--=-g,)is an eigenpair of (4). Hence, the

transformation of the eigenvalue problem from (3) to (4) does not change the eigenvectors,

and the eigenvalues are related by

1

(5)

The form of the spectral transformation, especially when compared to (2), may seem com-

plicated. The form is dictated by our need to be able to apply the Lanczos algorithm even

in cases when M is semidefinite. Other advantages of this form are well-documented in [37].

The main advantage of applying the Lanczos algorithm to (4) instead of (3) becomes

clear when the effect of the spectral transformation on the spectrum is considered. Figure 1

gives the general shape of the transformation. The results in Table 2 demonstrate the effect

of the transformation in detail. These are the values obtained using the initial shift described

in §3.4; the generalized eigenproblem is the model of a nuclear reactor containment floor,

given by the stiffness and mass matrices BCSSTK26 and BCSSTM26, respectively, from the

Harwell-Boeing sparse matrix collection[l 1]. (We denote the generalized eigenproblem by

BCSST_26.)

Relative separation is affected dramatically. The smallest eigenvalues are transformed

from eigenvalues with extremely poor relative separation to eigenvalues with good relative

separation, even though their absolute separation is decreased. More important in this

transformation is that the eigenvalues far from the shift are transformed to poorly separated

values near zero. This spread of the eigenvalues ensures rapid convergence to the eigenvalues

near a. This is illustrated in Figure 1, where the desired eigenvalues are well off-scale, in the

region that appears to be suffering compression, and yet the relative separation is enormously

improved. This example clearly demonstrates that the shift does not have to be very close

in an absolute sense to work well.

The primary price for this rapid convergence is the cost of a factorization of K - aM. Of

course, we never form the actual transformation M(K- o'M)-IM explicitly- it is almost

certainly a dense matrix. Instead the transformation is realized implicitly as a sequence of

operations, in which we compute MQ for a block of vectors Q, or solve the linear systems

(K - aM)X = Q. In practice, these operations are realized by separate subroutines. This

modularity allows tuning the matrix factorization and multiplication routines to the class of

problem under consideration.

An additional complication introduced by the spectral transformation is that we still are

faced with a generalized symmetric eigenproblem; we must generalize the Lanczos algorithm

itself. We will make this generalization in three steps. We will first consider the ordinary

block Lanczos algorithm for a symmetric matrix H, during which we will establish our
7
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TABLE 2

Vibration Spectral Transformation of BCSST_26, o'1 = 385.3

A(i) _(i)

4.6 x 103

1.1 x 104

1.1 x 104

1.5 x 104

2.4 x 1014

3.0 x 1014

3.1 x 1014

5.4 x I0TM

2.4 x 10.4

9.4 x i0-5

9.2 x 10.5

7.0 x I0-5

4.2 x i0-Is

3.3 x 10-15

3.3 x 10-15

1.8 x 10-15

original transformed

gap relative gap gap relative gap

6.4 x 103

2.5 x 102

2.5 x 102

3.4 x 103

2.9 x 1013

3.6 x 10I'

3.6 x 1011

2.4 x 1014

1.2 x 10 -11

4.6 x 10 -13

4.6 x 10-13

6.3 x 10 -12

5.4 x 10 .2

6.7 x 10 -4

6.7 x 10-4

4.4 x 10-I

1.4 x 10.4

2.2 x 10.6

2.2 x i0-6

2.1 x 10.5

5.9 x 10 -x6

3.9 x 10 -18

3.9 x 10 -is

1.4 x 10-15

6.0 x i0-1

9.2 x 10 .3

9.2 x 10 .3

8.7 x 10 .2

2.5 x 10 -12

1.7 x 10-14

1.7 x 10-14

6.0 x 10-12



notation. Next we consider a direct generalization of the Lanczos algorithm for an arbitrary

generalized symmetric eigenproblem Hx = )_Mx, where we assume temporarily that M is

positive definite. In these first two steps the issue of shifting disappears for the moment. In

a third step we will move from this general form of the algorithm to the much more effective

form that is possible when H has the special form used in the spectral transformation.

2.2. Basic Block Lanczos Algorithm. Consider first the ordinary eigenvalue prob-

lem

Hx = $x,

where H is a real symmetric linear operator. An important characteristic of the Lanczos

algorithm is that H is not required explicitly. All that is required is a subroutine that

computes Hy for a given vector y. The block Lanczos iteration with blocksize p for an n x n

matrix H is given in Figure 2.

FIG. 2. Basic Block Lanczos Algorithm

Initialization:

Set Q0 = 0

Set B1 = 0

Choose R1 and orthonormalize the columns of R1 to obtain Q1

Lanczos Loop:

Forj = 1,2,3... do

Set Uj = HQj- Qs_IB T

Set A s = QTuj

Set RS+I = Uj - QsAs

Compute the orthogonal factorization Qj+IBj+I = RS+I

End loop

The matrices Qj, Uj, Rj for j = 1, 2,... are n x p, while Aj and B i are p × p, with A s

symmetric. The matrices Aj and Bj are the generalizations of the scalars a s and fiS in the

ordinary Lanczos recurrence; Rj+I is the residual at the j + 1-st step. The matrices Qs+I

and Bj+I are defined in the last step of the recurrence by the orthogonal (QR) factorization

of Rj+I, so that BS+I is upper triangular, and the columns of Q j+l are orthonormal.

This formulation of the Lanczos loop is the one least susceptible to round off errors [30]

and is the form that should be used in computation. In exact arithmetic, however, Us and

RS+I can be eliminated from the Lanczos loop and the recurrence formula becomes

(6) Qj+,B_+, = HQ_ - QsAj - Qj-,B T.

This three-term recurrence is what appears in earlier references to the block Lanczos al-

gorithm. The differences in formulation do not change the theoretical properties of the
9



recurrence. In particular, it is shownin [6, 17] that the combinedcolumn vectors of the

matrices Q1, Q2,... Qj, the so called Lanczos vectors, form an orthonormal set. The com-

putational efficiency of the Lanczos algorithm rests on the fact that these vectors can be

computed with a simple recurrence and with a fixed amount of work per iteration step.

The blocks of Lanczos vectors collectively form an n x jp matrix Qi, where

Qj = [Q1, Q2, Q3,... Qj].

The algorithm also defines a jp × jp block tridiagonal matrix Tj:

Tj =

A1 B T 0 ... 0

B2 A2 B T ... 0

•. ... ".. ".. :

0 ... Bj-1 Aj-1 B T

0 ... 0 Bj Aj

Since the matrices Bj are upper triangular, Tj is a band matrix with half band width p + 1

(rather than 2p, if the Bj were full). The first j instances of formula (6) can be combined

into a single formula:

(7) HQj = QjTj + Qj+IBj+IE T.

Here Ej is an n x p matrix whose last p × p block is the p x p identity matrix and which is

zero otherwise. Formula (7) is a compact way of expressing the Lanczos recurrence, and will

be used throughout this discussion.

By premultiplying (7) by QT and using the orthogonality of the Lanczos vectors, it

follows that

QT HO.j = Tj.

Hence Tj is the orthogonal projection of H onto the subspace spanned by the columns of Q_.

For p = 1, this space is called the Krylov subspace Kj(H; ql)- It can be shown by induction

that

span( Qj) = span(Q1,HQ1, H2Q1, . . . HJ-IQ1),

where span ( . ) denotes the subspace spanned by the columns of the matrices involved.

From a different perspective, the (block) Lanczos algorithm is a method for constructing an

orthonormal basis for the (block) Krylov subspace determined by H and Q1. This basis of

Lanczos vectors is distinguished by the fact that the orthogonal projection of H onto the

(block) Krylov subspace is given by a (block) tridiagonal matrix. Hence the eigenvalues of Tj

are the Rayleigh-Ritz approximations from span(Qj) to the eigenvalues of H. In addition, if

s is an eigenvector of Tj, the vector y = Qjs is an approximate eigenvector of H. Viewed in

this form, the Lanczos algorithm replaces a large and difficult eigenvalue problem involving

H by a small and easy eigenvalue problem involving the block tridiagonal matrix Tj.

10



How good axethe approximationsobtained by solving the block tridiagonal eigenvalue

problem involving the matrix Tj? An a posteriori bound on the residual can be obtained as

follows: Let 0, s be an eigenpair for Tj, i.e.,

Tjs -- s0,

and let

y = Qjs,

then

(8)

lilly - yOll = IIHQj - Qj ell 
= IIQ T, + Qj+_Bj+_ ETs - Qj ell = IIQj+_Bj+IETsII2

= IIBj+,EyslI2= IIBj+, JlI2,

where sj are the last p components of the eigenvector s. The quantity [[Bj+lsjll2 can be com-

puted without computing the approximate eigenvector y. Hence, with some modifications

described in §4.2, (8) provides an inexpensive a posteriori error bound.

Formula (8), however, does not guarantee that good approximations to eigenpairs will ap-

pear quickly. Such a priori estimates are provided by the Kaniel-Paige-Saad theory. Parlett

[31] gives the most detailed discussion for the single vector case (p = 1). The generalizations

to the block case were originally derived by Underwood [17]. Extensions to both of these

presentations can be found in [35].

2.3. The Spectral Transformation Block Lanczos Algorithm. The next step is

to consider the generalized symmetric eigenproblem Hx = AMx. Were we to reduce the

problem to standard form by factoring M, the three term recurrence (6) would become

(9) Qj+,Bj+I = M-1/2HM-1/2Qj - QjAj - Qj_IB T.

If we premultiply (9) by M 1/2 and make the transformation of variables Qj = M-1/2Qj, (9)

becomes

(10)

MOj+IBj+ 1 - M1/2M-1/2HQj- MOjAj- MOj-1BT

= HQj- MQjAj- MQj-IB T.

Again the value of the transformation may not be clear. The matrices (_j are now M-

orthogonal, rather than orthogonal, since QTQj I implies ^T ^- QjMQj = I. This is alsoa

property of the eigenvectors X of this generalized eigenproblem. The approximate eigenvec-

tots will eventually be computed in the subspace span(e) regardless of the form used for

the Lanczos recurrence. M-orthogonality will introduce difficulties in implementation, but

the advantages of performing the recursion in the correct subspace are well documented in

[37]. The Lanczos recurrence in this subspace is given in Figure 3.
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FIG.3. Generalized Symmetric Block Lanczos Algorithm

Initialization:

Set Qo = 0

Set B1 = 0

Choose R1 and M-orthonormalize the columns of Ri to obtain Qa (see §4.1)

Lanczos Loop:

For j = 1,2,3... do

Set Uj = HQj- MQj_,B T

Set Aj = QTMUj^_

Set Wj+I = Uj - MQjAj

Solve MRj+I = Wj+I

Compute the M-orthogonal factorization Qj+IBj+I = Rj+I

End loop

Here the matrix M is used at several occasions to assure the M-orthogonality of the

Lanczos vectors, i.e., to assure that

Q_MQj = I.

In particular, the last step requires computing the M-orthogonal factorization of Rj+I. Stan-

dard derivations of the orthogonality of the Lanczos vectors easily generalize to show that

these vectors are M-orthogonal, that is, orthogonal with respect to the inner product defined

by xT My.

It appears that M -1/_ has disappeared from the standard recurrence, only to reappear in

disguise as a solution operation. Indeed, (10) applied to the original problem Kx = AMx is

merely an implicit form of the explicit reduction to standard form. This is not the case when

H is taken as the operator in the spectral transformation. Substituting M(K - aM)-lM

for H gives:

(11) MQj+aBj+, = M(K-aM)-IMQj- MQjAj- MQj_,B T.

M now appears in all of the terms in the recurrence. Formally we can premultiply (11) by

M -1 to obtain a recurrence

(12) Oj+,Sj+, = (g - aM) -1MO,_ - Q_Aj - Qj_,B T

in which M -x does not appear. This has advantages generally and, in particular, allows us

to apply the same recurrence even when M is semidefinite. The justification for doing so

appears later in §2.4.

At this point we shall drop the fiction of Q. All operations will take place in this space,

and we shall no longer bother putting 'hats' on the matrices. The actual Lanczos recurrence

for solving (4) is given in Figure 4.
12



FIG. 4. Block Lanczos Algorithm for the Vibration Problem

Initialization:

Set Q0 = 0

Set B1 = 0

Choose R1 and orthonormalize the columns of R1 to obtain Q1

with QT(MQ_)= Iv

Lanczos Loop:

Forj = 1,2,3... do

Set Uj =(K-aM)-I(MQj)-Qj-xB T

Set mj = UT(MQj)

Set Ry+a = Uj - QjAj

Compute Q j+l and (MQj+I) such that

a) Qj+,B3+I = Rj+I

b) vQj+I(MQj+,)= Ip

End loop

Assuming the matrix (MQj+a) is actually stored (at least temporarily), the algorithm

as written requires only one multiplication by M per step and no factorization of M is

required. However, the appropriate implementation of the last step of the Lanczos loop

is not as obvious as it may seem. This M-orthogonalization of a set of p vectors will be

discussed in more detail in §4.1.

Our next goal is to understand how the eigenvalue approximation results for the ordinary

Lanczos algorithm generalize to the spectral transformation block Lanczos algorithm. As

before, combining all j instances of (12) into one equation yields

(13) ( K - aM)-' M Qj = QjTj + Qj+,Bs+, E T,

where Qj, Tj, and Ej are defined as in (7). Premultiplying (13) by QTM and using the

M-orthogonality of the Lanczos vectors, it follows that

QTM(K-aM)-XMQj = Tj.

Hence, Tj is the M-orthogonal projection of (K - aM) -1 onto the block Krylov subspace

spanned by the columns of Qi. The eigenvalues of Tj will approximate the eigenvalues of

(4). If (s,O) is an eigenpair of Tj, i.e.,

Tj8 _ 80_

then (y = Qj,s, O) will be an approximate eigenpair of

M(K - aM)-IMy = laMy.
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However, we are interested in eigenvalue approximations to the original problem (3) and

not to the shifted and inverted problem (4). Formula (5) describes the relationship between

the spectra of the two problems: if 0 is an approximate eigenvalue of Tj, (5) implies that

1

v=a+ 0

is an approximate eigenvalue of (3). Since the spectral transformation does not change the

eigenvectors, y is an approximate eigenvector for (3).

The a posteriori residual bound (8) does not generalize quite so cleanly. The computation

analogous to (8) results in

(14) (K -aM)-IMy - yO = Qj+iBj+IEf S.

For 0 # 0 it follows that

_My - (K - aM)y = _(K - aM)Qj+IBj+I E T s,

or

(K - vM)y = -o(K - aM)Qj+IBj+IET s.

The quantity on the right is computable without explicitly computing the eigenvector y, but

only at the cost of a multiplication by K - aM. This is not desirable because K - aM

is otherwise not used in the recurrence -- only the factors of K - aM are assumed to be

available. In §4.2 we present a better way to obtain a residual bound. (Note that 0 = 0

corresponds to an infinite eigenvalue of (3), which should not appear in T, as discussed

below. Very small 0 correspond to eigenvalues far from the shift. The usual convergence

results predict that these will be very inaccurate, which is reflected in the division by _ in

the residual bounds.)

2.4. Semidefiniteness in the Metric M. Throughout the discussion above, we have

made the assumption that M is a positive definite matrix. The important case of a semidef-

inite M, where there are vectors z # 0 such that

Mz = O,

remains to be considered. The formulation of the block Lanczos algorithm for the vibration

problem does not require the factorization of M. Hence the spectral transformation Lanczos

algorithm can be applied formally in this case without further modifications. However,

the eigenproblem (3) has both finite and infinite eigenvalues and the effect of the infinite

eigenvalues on the convergence of the finite eigenvalues is unclear. Fortunately, we need

only to make the obvious block modification of the analysis in [28] to remove the infinite

eigenpairs from the recurrence. Following Nour-Omid et. al., the starting block for the

Lanczos algorithm should be computed as in Figure 5.

Here R1 is a block of vectors, chosen by some (arbitrary) rule and Q1Bo is the M-

orthogonal factorization of R1. We take the M-orthogonal block Q1 as the starting block for

the recurrence.
14



FIG. 5. Computation of the Starting Block

Choose R1

Compute Ra = (K - aM)-IM[_x

M-orthogonalize R1 = Q1Bo

The eigenvectors of Kx = AMx corresponding to finite eigenvalues consist of a compo-

nent orthogonal to the null vectors of M and a component in the nullspace of M. Ericsson

[13] shows that the second, nullspace, component is determined by an algebraic constraint

from the non-nullspace component. The constraint expresses the fact that all of these eigen-

vectors lie in the range of (K - aM)-IM. It is shown in [13, 28] that all of the Lanczos

vectors lie in this subspace when the starting vectors are chosen in this subspace, as above.

The effect of this choice of starting block is that infinite eigenvalues have no influence what-

soever on the block Lanczos algorithm in exact arithmetic. There is the possibility in finite

precision arithmetic that infinite eigenvalues reappear in spite of this choice. In §4.2 we

add a final postprocessing step to purge the approximate eigenvectors of components not

satisfying the constraint.

2.5. A Spectral Transformation for Buckling Problems. The final point to be

discussed in this section is the implementation of the spectral transformation for the buckling

problem

(15) Kx = AK6x,

where K is the symmetric positive semidefinite stiffness matrix and K_ is the symmetric

differential or geometric stiffness matrix. Typically only a few eigenvalues closest to 0 are

wanted. A simple approach would be to interchange the roles of K and K6 and to compute

the largest eigenvalues of the problem

(16) K6x = #Kx,

with/_ = 1/A by applying the simple Lanczos algorithm without shifts. This reciprocal ap-

proach has the three drawbacks as (2): it requires the factorization of the possibly semidef-

inite matrix K, it does not allow for shifting, and the Lanczos vectors would not be in the

same subspace as the approximate eigenvectors. However, it is often effective when K is

positive definite because the number of eigenvalues sought is rarely large.

An alternative form of the spectral transformation [19] allows more general forms of

(15), particularly the semidefinite K case. The operator K - aK8 is factored, but the

Lanczos recurrence is carried out using K-orthogonality among the Lanczos vectors. This

modification is easy to implement by replacing each multiplication by the mass matrix M

in the vibration case with a multiplication by the stiffness matrix K in the buckling case;

the rest of the recurrence remaining the same. Hence, in the buckling case, the shifted and

inverted problem

(17) K(K - aKs)-IKz = #Kx
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is solved instead of the original problem (15).

In the buckling spectral transformation (A,x) is an eigenpalr of (15) if and only if

A X(yz-g__,) is an eigenpair of (17). Hence the buckling spectral transformation does not change

the eigenvectors, and the eigenvalues are related by

A

/_- A-a"

These results can be obtained directly, or by applying the vibration spectral transformation

with reciprocated shifts to the reciprocal problem (16).

The advantages of the buckling spectral transformation are essentially the same as those

of the vibration spectral transformation. Large eigenvalues of the buckling problem are

transformed to a cluster of eigenvalues near unity. Eigenvalues near the shift a are trans-

formed into well separated eigenvalues, which are easily computed by the Lanczos algorithm.

The major difference is that a shift at a = 0 is not allowed, since all eigenvalues would be

transformed to 1. This singularity in the transformation also affects shifts close to zero;

very small shifts should not be taken in this form of the transformation. Figure 6 shows an

example of the buckling spectral transformation. Table 3 gives details for the eigenproblem

BCSST_28, treated as if it were a buckling problem. The initial shift is negative because

we ordinarily expect the first negative eigenvalue to be the eigenvalue of most interest in

buckling problems (see {}3.8). Just as in the case of the vibration spectral transformation,

we see that the shift does not need to be close to the desired eigenvalues in any absolute

sense. Indeed, in this case the shift is on the wrong side of the origin and yet still has the

correct effect on relative separation. Note that because of the scale used to replicate this

real example, all the desired eigenvalues are off-scale, and it is not possible to see that the

asymptotes for this transformation are at y = 1 rather than y = 0.

TABLE 3

Buckling Spectral Transformation of BCSST_26, O"1 : -385.3

i A(i)

1 4.6 x 10 3

2 1.1 × 10 4

3 1.1 × 10 4

4 1.5 × 10 4

:

1919 2.4 × 1014

1920 3.0 × 1014

1921 3.1 × 1014

1922 5.4 x 1014

u(i)
9.23 x I0-1

9.66 x I0-'

9.67 x I0-I

9.74 × i0-1

1.00 x i0°

1.00 x 10°

1.00 x 10°

1.00 x 10 °

original

gap
6.4 × 103

2.5 x 102

2.5 x 102

3.4 × 103

2.9 x 1013

3.6 x 1011

3.6 x I011

2.4 x 1014

relative gap

1.2 x i0-xl

4.6 x I0-13

4.6 x 10-13

6.3 x 10-12

5.4 x 10 -2

6.7 x 10 -4

6.7 x 10 -4

4.4 x 10 -1

gap

transformed

4.3 x 10-2

7.3 x 10-4

7.3 x 10.4

7.2 x I0-3

2.3 x I0-13

1.6 x lO-15

1.6 x 10-15

5.5 × 10 -13

relative gap

5.6 x I0-'

9.5 x 10.3

9.5 x I0-3

9.4 x I0-9-

3.0 x 10-12

2.0 x i0-14

2.0 x 10-14

7.1 x I0-12

Except for the different role of the stiffness matrix K, all implementation details are

the same for vibration and buckling analysis. Issues involving the M-orthogonality of the

Lanczos vectors apply equally to the K-orthogonal Lanczos vectors in the buckling case.
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Fzo. 6. Buckling Spectral Transformation
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Since the stiffness matrix K is used in the initialization phase in the same way as M in

the vibration case, the sequence of Lanczos vectors will be orthogonal to the space spanned

by the eigenvectors corresponding to zero eigenvalues of K. Hence Tj will contain no ap-

proximations to the exactly zero eigenvalues of K, which are also zero eigenvalues of (15).

This is desirable since typically the first nonzero eigenvalue of (15) is what is wanted. The

eigenvalues computed by the buckling spectral transformation Lanczos method are distinct

from zero.

The eigenvalues of Tj approximate the eigenvalues of (17). Hence, if (s, 0) is an eigenpair

of Tj, that is,

Tjs = 88,

then an approximate eigenpair (v,y) of (15) can be found by

aO
12--

0-1

and

y = Qjs.

These approximate eigenvectors y form a K-orthonormal set. Bounds on the residuals of

approximate eigenpairs will be derived in §4.2.

3. A Strategy for Choosing Shifts. The problem to be solved is to find some of the

eigenvalues and eigenvectors of

KX = MXA

or

KX = K_XA.

It is critical to emphasize the fact that we want some, not all, of the eigenvalues. The

eigenvector matrix X is almost always a dense matrix even though the original matrices

are sparse. We can take advantage of the sparsity of K and M only if we can restrict our

attention to a small subset of the eigenvalues.

It is generally sufficient to specify the significant eigenvalue restrictions on the eigenvalues

desired by a combination of:

• an ordinal description (e.g., the 50 eigenvalues of smallest magnitude), and

• a physical restriction (e.g., only eigenvalues below 200 or eigenvalues closest to 600).

Both restrictions can be used together, as for example, the 45 lowest eigenvalues in [10, 100].

Each can also be used separately, as the smallest 70 eigenvalues, or as all eigenvalues in

[0, 30]. The problem can be written in its general form as:

• find the p eigenvalues of smallest magnitude in [a, b] and their eigenvectors, or

• find the p eigenvalues of largest magnitude in [a, b] and their eigenvectors, or

• find the p eigenvalues in [a, b] closest to _ and their eigenvectors, or

18



• find all eigenvaluesand eigenvectorsin [a,b].

Here [a, b] is the computational interval, which can be finite (both a and b finite), semi-

infinite (only one of a and b finite), or infinite (no restrictions at all). Note that the problem

of finding the algebraically least eigenvalues in an interval can be transformed into one of

finding the eigenvalues of smallest magnitude by a suitable shift of origin.

The purpose of the spectral transformation is to transform the original problem into

one whose dominant eigenvalues represent some of the desired eigenvalues. The dominant

eigenvalues of the transformed problem correspond to the eigenvalues of the original problem

nearest a.

There are two major goals that drive our strategy for choosing shifts. One is efficiency -

we would like to choose a sequence of shifts al, a2,..., a, so that the total cost, including the

cost of the s factorizations and the costs of the individual Lanczos runs, is minimized. This

is a difficult problem whose optimal solution depends on the spectrum of the problem, which

we cannot know. We have already given an example in Table 1 that shows that there is a

better solution than choosing a single shift to compute a very large number of eigenvalues.

Our heuristic approach to measuring and reducing cost is described in §3.2 and §4.4.

The second goal of our shift selection is robustness. It is not effective to compute

incorrect or incomplete answers, even if done quickly. A paramount objective for our design

was a code that would be able to compute all of the desired eigenpairs accurately, except

under extreme, pathological, conditions. Further, we wanted a code that could diagnose and

report any failures. This emphasis on robustness separates our code from the Ericsson-Ruhe

shifting scheme [12, 15], which may detect failures, but is unable to correct poor choices of

shifts. Our emphasis on robustness without user intervention distinguishes us from the code

described in [9], which attempts to solve the much harder general eigenvalue problem. The

tools we use to create robustness, trust intervals and matrix inertias, are an appropriate

place to begin the detailed discussion of our choices of shifts.

3.1. Trust Intervals, Matrix Factorizations and Inertias. Suppose that during

the course of eigenanalysis, we have computed a set of eigenvalues lying between two shifts

or 1 and a2. We would like to confirm whether these are, in fact, all the eigenvalues in this

interval. The key tool for sparse eigenvalue computation is the matrix inertia, as computed

from a factorization of a shifted matrix. Suppose that C is a real symmetric matrix, which

has been decomposed as

C = LDL T.

The inertia of C is the triple (Tr, v, _') of integers, where Ir is the number of positive eigenvalues,

v the number of negative eigenvalues and _ the number of zero eigenvalues.

Sylvester's Inertia Theorem ([31],p. 10) states that the inertia of a matrix is invariant

under congruence, that is, for all nonsingular matrices F, the inertia of FTCF is the same

as that of C. Note that D = L -1 C L -T, that is, D is congruent to C (with F = L-r).

By Sylvester's theorem, the number of negative entries in D is the number of negative

eigenvalues from C. (The entries in D are not eigenvalues - only the signs are matched.) It

is an easy extension to show that the number of negative eigenvalues of C - crI is the same

as the number of eigenvalues of C that are smaller than a. Thus, the number of negative
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terms in D from the LDL T decomposition of C - aI gives the number of eigenvalues smaller

than a. Frequently, in an abuse of notation, v(C - hi), is referred to as the inertia of the

shifted matrix; it is also called the Sturm sequence number in engineering references.

It is easy to see that v(C - a2I) - v(C -alI) is the number of eigenvalues in the

interval [ha, a2] (assuming a_ < a2 and the two factorizations are nonsingular). Thus, the

factorizations that are taken at al and a2 provide the inertias at these two shifts; from the

inertias we determine the number of eigenvalues in the interval [al, a2]. We can now compare

the number of eigenvalues expected in the interval with the number actually computed.

When these numbers agree, we say that the interval [al, a2] is a trust interval, trusted because

we have computed precisely the number of eigenvalues that we should have computed. Our

shifting strategy is driven by the goal of establishing a trust interval around all of the desired

eigenvalues.

However, applying these Sturm sequence results to generalized eigenproblems requires a

transformation from the ordinary eigenvalue problem CX = XA to the generalized problem

KX = MXA. These generalizations are not entirely straight-forward. We present the

results here; proofs are found in Appendix A. We compute K- aM = LDL T (or K- aK6 =

LDLT), and we want to draw conclusions from t,(K - aM) = v(LDLT). The interpretation

of v(LDL T) when these generalized symmetric eigenproblems are well-posed is given in

Figure 4. The major surprise in this table of the appearance of a second term when the

matrix used as a norm is only a seminorm. This term corresponds to an assignment of signs

to the infinite eigenvalues in the vibration case and the zero eigenvalues in the buckling case.

We note here that the term dim(A/'(M)) in the vibration case does not appear if K is positive

semidefinite, typically the case in structural engineering practice. If it does appear, it adds

a complication to the problem of finding the algebraically smallest eigenvalues, because the

infinite eigenvalues are the algebraically smallest eigenvalues. It makes the problem of finding

the eigenvalues of smallest magnitude slightly more difficult.

FIG. 7. Interpretation oft,(K - aM) or v(K - aK6)

vibration analysis:

M positive definite # of eigenvalues < a

M positive semidefinite (# of eigenvalues < a) + 7

0 some cases_' = dim(A/'(M)) other cases

buckling analysis:

K positive definite

K positive semidefinite

# of eigenvalues in (0, a) or (a, 0)

(# of eigenvalues in (0, a) or (a, 0)) + "y

0 a of one sign3' = dim(A/'(K)) a of other sign

The term dim(A/'(K)) in buckling analysis is more significant. The usual problem of

finding the eigenvalues of smallest magnitude becomes impossible because the zero eigenval-

ues cannot be computed directly. The problem still can be solved if dim(.h/'(K)) is known,

either adventitiously or by being computed as a partial eigenanalysis of K. The problem of
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finding the eigenvaluesof smallestmagnitudein an interval bounded awayfrom zero is still
well-posed.

The result of a successfuleigenextractionis a trust interval containing all of the desired
eigenvalues.The eigenvaluesdesiredwill be all of the eigenvaluesin a subinterval of the
computational interval. In generalwewill haveto computethe inertia (and the factorization)
at eachend point of the subinterval. Each factorization typically representsa considerable
fraction of the costof a block Lanczosrun for the correspondingshiftedoperator. Therefore,
it is worthwhile to combine,whereverpossible,the shifts for verifying eigenvaluecounts,and
the shifts for Lanczosruns. The designof the shift selectionapproachesthis goalby creating
as soon as possiblea trust interval containing someof the desiredmodes,and thereafter,
extending that trust interval to contain more,and eventually all, of the desiredmodes.

The processbeginswith an initial shift at somepoint al. The factorization is followed

by a Lanczos run with the shifted operator (K - chM)-lM (or its counterpart in buckling

analysis). At the conclusion of the Lanczos run, some eigenvalues and eigenvectors are

returned. In all cases the first trust interval has been computed, because [al, ch] is an empty

trust interval. A larger trust interval may be available to us because often u(K - aiM)

gives the number of eigenvalues in (-ec, crl) (in buckling analysis, either (0,_rl) or (ch,0)

). Should the Lanczos run have computed that many eigenvalues to the left of el, the first

trust interval becomes nontrivial. It is not unusual for this to occur, but it is unusual for

this first trust interval to contain all the requested eigenvalues.

In general, it will be necessary to take a second factorization, at _r2, at least to provide a

second inertia. The first decision that has to be made is whether _r2 should be to the left or

to the right of _rl. We choose a direction from the eigenvalues converged during the Lanczos

run at _rl, the inertia at _rl and the description of which eigenvalues were requested. In the

following we assume expansion of the trust interval to the right, but the actual algorithm

can and does go both ways. If only some of the desired eigenvalues were computed during

the first Lanczos run, we would like to make the factorization at cr2 serve both as a basis

for an inertia computation and as the factorization for a new Lanczos run. We would like

to take _r2 close enough to crl so that at the end of the second Lanczos run [ch, cr2] will form

a trust interval - all the eigenvalues in the subinterval will have been computed by one of

the two Lanczos runs. We proceed to expand the subinterval [Crl, a2] to include more of the

desired eigenvalues.

The selection of _r2 is complicated by the desire to be efficient in the use of the factoriza-

tion and of the block Lanczos algorithm. Ideally we would choose a2 close enough to _rl that

the second Lanczos run finds all the remaining eigenvalues in the interval, and at the same

time, we would like cr2 to be far enough away from crl so that the second Lanczos run stops,

for efficiency reasons, exactly when it has computed all the missing eigenvalues. Thus, a

simple description of our shift selection is that we choose each new shift to maximally extend

an existing trust interval.

Obviously the desire to maximally extend the trust interval presents a conflict between

the goal of maintaining trust and the goal of extending as far as possible. Resolving this

conflict is the topic of the next section.
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3.2. Shifting to Extend a Trust Interval. Successive shifts are taken to extend the

initial trust interval containing al. Each new shift, as discussed, should attempt to maximally

extend the trust interval. Unfortunately we do not know exactly where the uncomputed

eigenvalues lie. After the initial shift and Lanczos run we do have some information available

on which to base a selection, including any computed eigenvalues, other knowledge about

the existing trust interval, and additional information from the previous Lanczos runs.

In general, each Lanczos run creates a set of approximations to eigenvalues. Some

of these meet our criterion for accuracy. For simplicity, we refer to these as eigenvalues,

although they are really accurate approximations thereto. The remainder of the approx-

imations created by the Lanczos algorithm are not (yet) acceptable as eigenvalues. They

may be close to eigenvalues or they may be poor approximations to eigenvalues, but they

do provide a general picture of the distribution of the uncomputed eigenvalues. Figure 7

gives an illustration of the general situation, in which the last Lanczos run was at a shift a_

that forms the right end point of a trust interval. The tallest, thin, lines denote eigenvalues.

The lines of medium height and width are approximations which are not yet acceptable as

eigenvalues, but which do have accuracy estimates good enough to know that at least one

significant digit is correct. We call these Ritz values. (The Lanczos approximations are Ritz

values, but we abuse the mathematical term to describe only those approximations that are

not good enough to be accepted, and not bad enough to be meaningless.) The short, broad,

lines denote approximations whose accuracy estimates are larger than their values.

FIG. 8. 7t'ust Intervals

IlllllllI Illll
Trust Interval

I Illlhilll,l,,I,
T T

Eigenvalues Ritz Values

I!

The shift selection assumes that the inverted spectrum as viewed from oi.bl will be

similar to the inverted spectrum as viewed from _ri. One view of this similarity of inverted

spectra is that if the Lanczos run from ai computed k eigenvalues to the right of ai efficiently,

we expect that an efficient run at any ai+l should compute k eigenvalues to its left. Thus

a_+l should be placed between the 2k - th and (2k + 1) - st eigenvalues to the right of a_.

We only know k of these eigenvalues, which we assume are the first k. We use the first k

Ritz values to estimate the missing eigenvalues, and place the new shift ai+l between the

k - th and (k + 1) - st Ritz values. It is desirable that the shift not be extremely close to an

eigenvalue -- if it were, the eigenvalue near the shift would completely dominant the Lanczos

recurrence. For that reason we choose the bisector of the two specified Ritz values as the

shift, rather than using a Ritz value itself as a shift. Further, we use a relaxed tolerance to

detect "clusters" of eigenvalues, and bisect clusters rather than Ritz values.

22



Unfortunately, it is possible that there are fewer than k Ritz values available to the right

of ai, or perhaps none at all. This situation will arise if ai were chosen extremely close to

an eigenvalue, in which case the Lanczos approximations to the nearby eigenvalue would be

accurate, but none of the Ritz values would be accurate enough to specify the new shift.

This seemingly unlikely case is particularly likely to happen when K is semidefinite and the

first shift is taken at zero. Zero is a reasonable choice, yet is also an eigenvalue.

To treat such cases we use a second view of the inverted spectra, based on the assumption

that the "radius of convergence" should be about the same for each shift. We define _ to

be the maximum of its previous value and the distance between the right end point of the

trust interval and the rightmost computed eigenvalue (see Figure 7). Initially, _ is set to the

problem scale (see §3.4). Then a second choice for the next shift is ai+l = ai + 2 * ,_.

We have to choose between these two possible shifts. We take the more aggressive

choice, the maximum of the two possibilities, in the case where we still need to compute

more eigenvalues than we have knowledge of Ritz values. If more Ritz values are available

than there are eigenvalues left to compute, we choose the next shift based solely on the Ritz

values, ignoring the shift based on g.

We have discussed these general rules for choosing ai+l in the case where ai+l is to the

right of ai. Of course, we obtain two similar views of the spectra to the left of ai, which give

another alternative for the next shift. In general we do not know in which the direction the

next shift should be. Indeed, there are circumstances in which we first move in one direction

from ai and then in the other direction. This occurs when we find eigenvalues nearest an

interior point of the computational interval or when we need to go backwards to find missing

eigenvalues. However, we do not care to deal at any time with all the Ritz values from all

of the shifts; interpreting this possibly redundant set of values would be quite complicated.

For that reason, at the completion of each Lanczos run in which we attempted to extend

a trust interval, we compute, and save, the next shift which would extend the new trust

interval further in the same direction. The first shift, unless it is at a finite end point of the

computational interval, is treated as extending the null trust interval both to the left and to

the right. The Ritz values can be discarded after the tentative shift has been computed.

These two views of the inverted spectra, albeit simplistic, have proven to be effective.

The assumption that the two inverted spectra will have similar convergence behavior is a

gross simplification, but we have been unable to develop a model that performs better in

practice. Ideally we would use the Ritz values to predict the overall convergence rates of the

eigenvalues, but the best current model for the convergence of interior eigenvalues [35] is far

too pessimistic to be of any use here.

There are cases where one or more additional factorizations are required simply to es-

tablish the trustworthiness of an interval. As a simple and common example, assume that

the ten least eigenvalues are required in a vibration analysis. An initial shift is chosen as

described in the next section, and a single Lanczos run is made with this shift. The Lanczos

run computes ten eigenvalues. If these ten eigenvalues are in fact the least ten eigenvalues,

this can be verified by computing the inertia for a shift lying between the tenth and eleventh

eigenvalues. In practice, the bisector of the tenth computed eigenvalue and the Ritz value

that we believe estimates the eleventh eigenvalue is taken as a2. If _(K - a2M) = 10 the
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eigenproblemhasbeensolved. If not, a specialcaseof missing eigenvalues must be handled

(see §3.7.1).

3.3. Sentinels. There are several aspects of our eigenanalysis code where the shift se-

lection mechanism and the implementation of the Lanczos algorithm are closely tied together.

For example, we do not want to recompute at later shifts eigenpairs that have been computed

from earlier shifts. Any computation spent recomputing known eigenpairs is wasted. Even

allowing accidental recomputation creates a difficult situation in which we must determine

the correct multiplicity of a computed eigenvalue for which several eigenvectors have been

computed. We choose never to allow this situation to arise.

In theory there is a very simple fix. If the starting block for the Lanczos recurrence is

chosen to be M-orthogonal to all previously computed eigenvectors, the recurrence should

remain M-orthogonal to all previously computed eigenvectors. This is not sufficient in

practice, as rounding errors introduce components of the excluded eigenvectors. One could,

at each step, reorthogonalize the Lanczos blocks to the excluded eigenvectors, but that is

unnecessary. A better solution is to reorthogonalize the recurrence to specific eigenvectors

only when necessary; the mechanism for doing so is external selective orthogonalization, the

topic of §4.3.3. This mechanism dramatically reduces the cost of preventing the reappearance

of excluded eigenvectors.

A second mechanism for reducing this cost is in the purview of the shifting code. A

common situation is depicted below, in Figure 8. The new shift, a_+l, has been chosen; the

nearest previous shift, aj, forms the end of a trust interval. (Figure 8 depicts the initial

case where the trust interval including aj is trivial.) Between the two shifts lie a set of

eigenvalues and Ritz values computed during the run at aj. Because the convergence rate

for the eigenvalues in the Lanczos algorithm decreases as the distance from the shift increases

(as one moves into the interior of the shifted and inverted spectrum), the usual pattern is

that the accepted eigenvalues are those closest to aj and the Ritz values are those farther out.

There is usually no interlacing of the two sets. It is also typical that the Lanczos algorithm

does not miss eigenvalues - an eigenvalue near the shift will be represented as some sort of

Ritz value. (Eigenvalues of high multiplicity may be represented by fewer Ritz values than

the multiplicity warrants.) We expect that any eigenvalues not yet computed between _r_

and a_+l will be found in the region represented by the (unaccepted) Ritz values as opposed

to the region in which eigenvalues converged.

Consider in each direction the eigenvalue farthest from a i such that between it and crj

no (unaccepted) Ritz values are found. There is such an eigenvalue to the right of a shift

and similarly to the left, each being the last eigenvalue before a Ritz value is found. We

call these two eigenvalues ,X_.and _[. In normal circumstances we assume that there are no

eigenvalues missing between o'j and ,X; or )_T"

We define the right sentinel sr as the left end point of the interval of uncertainty for

,X;, based on the required accuracy tolerance. We know that the true value of ,k_*lies to the

right of the sentinel st. A left sentinel is defined similarly. We perform the Lanczos run

at the new shift ai+l using limited orthogonalization. Assume ai+l > aj. The eigenvectors

corresponding to ,X_"and to any other eigenvalues found between s_ and a;+l are prevented

from reappearing by use of external selective orthogonalization. We allow the recurrence to
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FIG. 9. Sentinels
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recompute eigenvalues which lie to the left of st, but these are discarded immediately. This

technique allows us to trust any eigenpairs that are computed in the region where we expect

new eigenpairs to appear, without our incurring the cost of extensive reorthogonalization.

The reorthogonalization with respect to )_:'s eigenvector removes any doubt that could exist

about the exact location of this eigenvalue in the shifted and inverted spectrum for the new

shift. At the same time, the eigenvector(s) most likely to reappear are suppressed.

We generalize the notion of sentinels slightly to handle clusters of eigenvalues. Should

the sentinel sr lie to the left of _r-1, we move the sentinel back to the end point of the

uncertainty interval for A'__I. We continue this process until the sentinel lies between the

intervals of uncertainty for two eigenvalues, or until the shift itself is used as the sentinel.

3.4. The Initial Shift. The most difficult task is usually the first: getting started.

The selection of the first shift must be made with no information about the spectrum other

than the specification of the desired eigenvalues. We use any location information in the

specification to make an initial choice for the first shift, al.

a if lal < Ibl if lowest modes or all modes wanted and min [a[ Ibl< o_
b if lal > Ibl

a if lal >_Ibl if highest modes wanted and max lal, Ibl<
b if lal < Ibl

or1 = a if lal < Ibl if highest modes wanted and min lal, Ibl< max lal, Ibl=
b if lal > Ibl

if modes nearest _ wanted

0 otherwise

This choice of or1 gives a reference point in the spectrum as to which eigenvalues are important

to the user. In cases where _ is not specified by the user, we define _ to be o'1 as defined

above. We note that 0 is a natural choice when we have no location information -- in that

common case we want the eigenvalues of least magnitude, i.e., closest to 0.

Unfortunately a choice of al = 0 is fraught with difficulties. A shift at zero is not

allowed in the buckling transformation and yields a singular operator in vibration analysis

when K is semidefinite. If a shift at zero were taken in the latter case, it is unlikely that the

singularity of the operator would be detected. It is more likely that only the zero eigenvalues

would be computed and no other useful information could be extracted from the run. (The
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near-singularity of the operator would cause the Lanczos recurrence to break down after

computing the invariant subspace of the zero eigenvalues.) This would leave us little better

off than we began, with no information as to where the nonzero eigenvalues are located.

A better initial shift would be a shift somewhere in the vicinity of the first few nonzero

eigenvalues. Such a shift would allow computing both the zero, rigid body, modes and a

number of the nonzero modes as well.

The difficulty is in getting some idea of the scale of the first nonzero eigenvalues. We have

adopted a heuristic strategy recommended by Louis Komzsik of The MacNeal-Schwendler

Corporation. This heuristic computes the geometric mean of the centers of the Gershgorin

circles while excluding the centers smaller than 10 -4. This heuristic usually computes a

reasonable problem scale X. Specifically,

1
X =

4-if, E I ,,IIk.I

where the summation is taken over all k, _ 0, _ < 104. Table 5 gives an idea of theIk.I
reliability of this heuristic.

We use X to correct the initial selection of al whenever I¢11< x. In either the vibration

problem or ordinary eigenvalue problem we adjust _71 as

X ifa<_x<_b
al = - otherwise, if a < -X < b

max(lal, [bl) otherwise

We adjust the initial shift in a similar fashion for the buckling problem. However, we try

al = -X first and then al = X second, because the most common buckling analysis in

structural analysis is an analysis involving the smallest negative eigenvalue.

3.5. Choosing a Direction in which to Expand a Trust Interval. The majority

of vibration analyses result in a simple, monotonic, expansion of the trust interval from

lowest to higher values. In these cases we know that there are no additional eigenvalues

of interest to the left of the trust interval; extending the interval to the right is the only

reasonable action. There are other cases in which we have a decision to make. Such cases

arise when a shift is taken in the interior of the spectrum by accident or by design. For

example, _ is a very reasonable initial shift when we want to find eigenvalues nearest _. In

general, finding the eigenvalues of smallest magnitude for an ordinary eigenproblem or for

buckling analysis is also such a case.

The reference value _, either as set in the problem description or from the initial shift

(see §3.4), is used to determine the direction in which to move the shift. If multiple trust

intervals exist, the trust interval including or closest to _ is primary; §3.7.1 describes how

multiple trust intervals can exist and the logic for determining a new shift in that case. In

the most typical case we have only a single trust interval, which we attempt to extend.

We distinguish two subcases, when the trust interval includes an endpoint of the com-

putational interval and not. In the first case the trust interval can only be extended in one

direction without moving outside the computational interval, so the choice of direction is
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TABLE 4

Comparison of Problem Scale X and Lowest Eigenvalues

matrix X lowest closest to

eigenvalue eigenvalue

BCSST_08

BCSST_09

BCSST_10

BCSST_ll

BCSST_12

BCSST_13

BCSST_19

BCSST_20

BCSST_21

BCSST_22

BCSST_23

BCSST_24

BCSST_25

BCSST_27

LUND

PLAT362

PLAT1919

1.8 x 10 -2

1.3 × 10 _'

3.1 × 10 -3

3.0 x 10 2

1.5 × 10 3

1.2 x 10 2

6.6 × 10 °

5.5 x 10 2

1.5 x 10 4

2.4 x 104

4.0 x I0-I

1.4 x 10-I

5.3 x 10 -s

2.6 x 10 -z

2.1 x 101

2.0 x 10.5

2.1 x 10-6

6.9 x 10 °

2.9 x 10r

7.9 x 10 -2

1.1 x 101

3.5 x 103

1.5 x 10z

2.1 x I0°

6.6 x I0°

5.1 x 104

7.3 x i04

4.5 x 101

4.3 x I0°

9.6 x 10-4

3.1 x i0°

2.1 x 102

3.6 x 10-12

l.l x 10-13

1

1

1

12

1

1

3

7

1

1

1

1

1

1

1

76

315
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trivial. When the trust interval includes neither endpoint, we further distinguish between

cases where _ is or is not in the trust interval. If the trust interval does not include _, we

shift in the direction of _, because that is where the eigenvalues of most importance to the

user lie.

The only remaining case is of a single trust interval that contains _, but neither endpoint

of the computational interval. In this case we compute the interval [zt, zr] that includes the

entire trust interval and all computed eigenvalues, even those outside of the trust interval.

We define r = min(_ - zl, zr - _) to be the radius of a symmetric umbrella about _ where

we have some degree of confidence that we have computed all the eigenvalues in the um-

brella. Note that this may be an extension of the trust interval and confidence may not be

confirmed by inertia values. Our goal is to enlarge this umbrella enough to include all of the

eigenvalues that the user has requested or until one end of the umbrella is an end point of

the computational interval. We move in whichever direction increases r, i.e. the direction

which increases the smaller of _ - zt and z, - _. Ties are broken by shifting to the left.

3.6. Analysis in a Finite Interval. Frequently the user of the sparse eigensolver will

specify a computational interval with finite end points. The number of eigenvalues in the

interval is usually valuable information to the user and the eigenanalysis code, even when not

all of these eigenvalues are actually computed. We obtain this information by computing two

factorizations, one for each end point. If these factorizations can be used in the eigenanalysis

itself, the cost of gaining this information would be nominal.

As discussed in the previous section, we often choose the initial shift to be one of the end

points. If so, one of the factorizations is required in any case. The factorization at the other

end point will be required for situations where all eigenvalues in the interval are desired.

Even when not, this factorization will be useful if the number of eigenvalues in the interval

is not much greater than the number desired.

We designed our code to compute the factorizations at both end points whenever both

end points are finite. These factorizations are saved off-line. We attempt to use these

factorizations whenever it appears to be appropriate. The initial shift will often make this

quite natural. Furthermore, when the natural choice of a shift would be near an otherwise

unused finite end point and when a shift at the finite end point would not cause a large

number of extra eigenvalues to be computed, we perturb the choice of shift to use the end

point. This may result in some additional work during the Lanczos iteration, but will save

the cost of a factorization.

We note that there are cases where we can extend a trust interval to a finite end point

without making a Lanczos run at the end point. These occur when the analysis at another

shift results in all of the eigenvalues between the shift and the end point.

3.7. Special Cases. Robustness is one of our goals. It is naive to expect that the

heuristics described above will work for all problems. Here we describe a number of special

cases that can and do arise in practice, and our approaches for handling them smoothly.

3.7.1. Filling Gaps. The shift selection is designed to extend the trust interval ob-

tained from previous Lanczos runs. Strange, asymmetric, distributions of eigenvalues or very

high multiplicities may, however, create situations in which the shift ai+l to extend the trust
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interval is taken too far from ai to allow computing all the eigenvalues in (0% 0"i+1) with a

single run. In such a case, the inertias from ai and ai+l will indicate that some eigenvalues

between the two shifts have not been computed.

Our heuristic is driven by the goal of maintaining a trust interval. We will find the

missing eigenvalues before we attempt to extend our knowledge beyond ai+l. Thus, we

attempt to fill the gap between the two active shifts ai and ai+l, before proceeding.

When eigenvalues are missing between two shifts, we assume that the missing eigenvalues

lie between the right sentinel si for the shift ai at the left and the left sentinel si+l for the

shift ai+l at the right. These sentinels become the end points of an interval in which we

want to compute eigenvalues. In some cases the sentinels define an empty interval; when

this occurs we extend the end points of the interval to the nearby end points of the trust

intervals bounding the gap. In either case we have a new interval

[si, si+l] if this is nontrivial[c,d] = [ai, ai+l] otherwise

in which we want to chose a shift. We choose ai+2 as

{ _/_ ifO<2c<d
_i+2 = -x/_-d if d < 2c < 0

_+a otherwise

It is not always the case that the gap between two trust intervals is filled on the first attempt.

The shifting strategy will continue recursively in its attempt to compute the eigenvalues

missing between the primary trust interval (for which ai is an endpoint) and its nearest

neighbor. We continue in the mode of filling a gap until the primary trust interval has

grown large enough to contain the requested eigenvalues or when all trust intervals have

been merged into one.

3.7.2. Restart at the Same Shift. Economizing on the number of factorizations is

also a goal. There are certain circumstances where the knowledge to be gained from a

particular shift is not exhausted by a single Lanczos run. In two such cases we initiate more

than one Lanczos run with the same shift.

One case occurs when there are eigenvalues of very high multiplicity. The block Lanczos

algorithm may not compute the full multiplicities of eigenvalues when the multiplicity is

larger than the block size. We maintain information of the sizes of the clusters of eigenvalues

that are computed by the Lanczos algorithm. When a Lanczos run encounters an eigenvalue

with multiplicity greater than or equal to the block size and when there are eigenvalues still

to be computed, we make an additional Lanczos run at the same shift. During this run we

perform external selective reorthogonalization against all the newly computed eigenvectors

and any other eigenvectors in the interval between this shift and any neighboring shifts. Our

goal is to compute any of the possible missing copies of the eigenvalues with high multiplicity

immediately. Note that we discard any use of sentinels because the assumption behind them

has probably broken down in the presence of high multiplicity.

A second case occurs when the shift strategy has made an unfortunate shift very close

to a true eigenvalue. In this case the block Lanczos procedure will terminate early, with
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a rank-deficient residual block. Assumingthat moreeigenvaluesnear this shift are still of
interest to us, we rerun Lanczosat the sameshift, while adding all the newly computed
eigenvaluesand eigenvectorsto the set of vectors for external selectiveorthogonalization.
This may keep the newly computed eigenvaluesfrom dominating the inverted spectrum,
thereby allowing the possiblecomputation of moreeigenvaluesat this shift. Suppressionof
the dominant eigenvaluesis not often effectivenumerically,but the costof discoveringthis is
very little. A particular casein which this approachis effectiveis whenthe nearbyeigenvalue
hasvery high multiplicity, that is, when both of thesecasesappearsimultaneously.This is
a particularly difficult situation for the shifting heuristic, making this specialcasesomewhat
more likely to occur.

3.7.3. Hole in the Spectrum. Another particularly difficult spectrumfor our selec-
tion of shifts occurswhen there is a very large disparity in the magnitudesof the desired
eigenvalues.In suchcasesour notion of a reasonabledistancemay be faulty and yet wemay
have no Ritz value information to help us choosea new shift. There are two simple ways
to createsuchcases. One occurs if we ask to compute eigenvalueslarger than the largest
finite eigenvaluein a casewhereM is singular. The second occurs when K is singular and

the initial shift is much smaller than the first non-zero eigenvalue; the zero eigenvalues are

computed as very small non-zero values, whose magnitude gives us no information about the

magnitudes of the other eigenvalues.

Our code treats as special a situation in which no new information is obtained at con-

secutive shifts. That is, we compute no meaningful Ritz values and the inertias at the two

shifts ori and _ri+l are identical. We suspect that there is a "hole" in the spectrum, that the

remaining eigenvalues are farther away than our notion of a reasonable distance. We expand

the notion of a reasonable distance in an attempt to cross the hole. If the computational

interval [a, b] has a finite end point that has not been used previously as a shift (see §3.6),

the shift strategy will select the new shift at that end point. Otherwise, assuming that we

are expanding a trust interval to the right, we take the new shift o'i+2 = _ri+l + 106 (see

§3.2 for a description of _5). If this Lanczos run still provides no new information, we take

a_+z = ai+2 + 1006. If we still obtain no new information, we make a final attempt to cross

the gap will be made with a shift ai+4 = ai+3 + 10006. If this run still provides no new

information, we terminate on the assumption that the remaining eigenvalues are infinite.

We return the eigenvalues already computed, together with an appropriate warning.

3.7.4. Treatment of/5 in No Ritz Value Cases. The setting of the "reasonable

distance" value, 6, must be made carefully in cases in which the Lanczos algorithm terminates

abnormally. This value is not updated if no new information is available for the next shift.

A likely cause is a shift that matches an eigenvalue. The particular case of rigid body modes

and a shift at zero is handled in this manner, so the reasonable distance value for the second

shift is the estimate of the non-zero eigenvalue discussed previously.

3.7.5. Overly Aggressive Shifts. Unusual distributions of eigenvalues or unusual

convergence patterns may cause situations in which a shift is selected much farther out than

required for the desired eigenvalues. This will occur only when one end of a trust interval is

being extended. We determine that the shift is too far from the current trust interval if a run
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at this shift will haveto computemore than 30eigenvaluesbeforecomputingeigenvaluesof
interest to us. That is, if weneedto compute q eigenvalues beyond the trust interval, but

there are more than q + 30 eigenvalues between the shift and the trust interval, the shift has

been taken too fax out. In such a case we record the old shift, to keep another shift from

going out too far in that direction, and select a new shift. The number 30 is a heuristic

estimate of the number of eigenvalues we can profitably find with a single run. We choose

the new shift by linear interpolation between the end of the trust interval at, and the shift

we reject, a_. The new shift is:

q - at).
a = at + [v(K - arM) - v(K - arM)]

3.8. Modifications for Buckling Problems. The spectral transformation used in

the buckling problem for the Lanczos iteration is ill-posed for shifts at or near zero. The

shift strategy for the buckling problem is similar to the vibration strategy except that shifts

at zero are not allowed. A shift at zero is replaced by one half the minimum of the problem

scale X, the absolute value of the shift nearest to zero, and the absolute value of the computed

eigenvalue nearest to zero.

4. Implementation of The Block Lanczos Algorithm. The underpinning of our

eigenanalysis code is the block Lanczos algorithm, as specialized for the spectral transforma-

tions (§2.3 and §2.5). The use of the block Lanczos algorithm in the context of the spectral

transformation and within applications code necessitates careful attention to a series of de-

tails: the implications of M-orthogonality of blocks; block generalizations of single vector

orthogonalization schemes; effect of the spectral transformation on orthogonality loss; and

interactions between the Lanczos algorithm and the shifting strategy. All of these issues are

important, but none of them has previously been addressed in detail. The success of the

algorithm hinges on their implementation.

4.1. The M-Orthogonal QR Factorization. Each step of the block Lanczos recur-

rence generates an n x p matrix R, whose column vectors are to be orthogonalized with

respect to an inner product defined by a positive definite matrix. In the two standard engi-

neering analyses the inner product matrix is the mass matrix M in vibration analysis or the

stiffness matrix K in buckling analysis. The vibration problem is the most common form;

we will let M stand generically for the matrix inducing the norm in either of these problems.

We hope that this will not confuse the reader in understanding the algorithm as applied to

buckling problems.

Given R, we must compute its orthogonal decomposition QB such that

• R=QB

• QrMQ = I

• Qisn×p

• B is p x p and upper triangular.

Were M the identity, we would have a number of good choices for computing an orthogonal

factorization. When M is not the identity, the choices appear to be limited. There are

straightforward modifications to the usual ordinary or modified Gram-Schmidt processes to
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account for M. However, both require computation of innerproducts qTM_Ij,j < i, where

_j indicates that _j is a vector that has already been modified during the algorithm. In

addition, the normalization condition requires _TM_j.

Multiplication of a vector by M may be expensive in structural engineering applications.

We expect M to be sparse, but not necessarily diagonal. Of greater consequence is the fact

that M may not be stored in main memory; multiplication by M may require accessing M on

secondary storage. For these reasons, we have adopted a generalization of the modified Gram-

Schmidt process that requires only matrix-block products, never matrix-vector products.

We realize this goal by saving a set of p auxiliary vectors that represent the product MQ

throughout the process. This matrix is initialized to MR when the matrix that will hold

Q is initialized to R; thereafter, updates made to vectors in Q are shadowed by identical

updates in MQ. As a result, M is used explicitly only in the initialization.

This way of enforcing M-orthogonality certainly suggests questions of numerical sta-

bility. However, it is well known that the Gram-Schmidt process itself does not guarantee

orthogonality of the vectors in a single sweep. Following [10], we repeat the orthogonalization

process up to 2p times, another repetition being required whenever the norm of any of the

qj vectors is less than 71times its norm at the beginning of the iteration. At each repetition

the matrix MQ is recomputed by an explicit multiplication by M. The choice of 71= vf2/2

from [10] guarantees that the final set of vectors is orthonormal.

In our algorithm for computing the M-orthogonal factorization (Figure 9), the vectors

wj are the auxiliary vectors that represent the vectors Mqj. The matrix B is the triangular

matrix computed in one iteration of the algorithm; the M-orthogonal triangular factor B is

the product of all of the individual triangular matrices/_.

It should be noted that this algorithm may encounter a rank deficient set of vectors qj

and identically zero vectors are possible. Further details can be found in our discussion on

when to terminate a Lanczos run (§4.4).

We have assumed in the discussion above that M is positive definite. In the case of

M positive semidefinite, the recurrence, when properly started, generates a sequence of

blocks, all of whose columns lie in the range of (K - aM)-IM. This is the subspace from

which the eigenvectors corresponding to finite eigenvalues must be drawn [13]. Clearly the

orthogonalization algorithm preserves this subspace. Further this subspace has only the

trivial intersection with the nullspace of M [13, 28]. Thus, the appearance of a non-trivial

column with zero M-norm represents a breakdown equivalent to rank deficiency, since such

a vector cannot lie in the range of (K - aM)-IM.

4.2. Analysis of the Block Tridiagonal Matrix Tj. The original eigenvalue problem

is reduced by the block Lanczos algorithm to an eigenvalue problem of the form

Tj8 -- 8_

where Tj is a block tridiagonal matrix, or equivalently, a symmetric jp x jp band matrix of

bandwidth 2p + 1. Approximate eigenvectors for the original problem are found through the

back transformation

y = Qjs.

32



FIG. 10. M-orthogonai Modified Gram-Schmidt Orthogonalization

Initialization:

Q=R

B=I

Factorization:

Repeat

W=MQ

For i = 1,2,...p do

bii = qTwi

qi = qi/bii

=
For j = i + 1,...p do

bij = qTwj

qj = qj - bijqi

Wj Wj -- bijwi

End

End

B=/}B

Until convergence or iteration limit exceeded
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In §2.2 we noted the standard result by which bounds on the accuracy of the computed

eigenvalues can be computed without explicit computation of the eigenvectors. These bounds

are used to determine whether to terminate the Lanczos recurrence and to evaluate which

eigenpairs are accurate enough to be considered to have converged. The results in §2.2

generalize to provide a bound on the accuracy of the approximate eigenvalues of the spectrally

transformed problem. However, our real interest is in the accuracy of our approximations to

the original, untransformed, problem. We need to determine which eigenpairs of the original

problem have converged, and we need accuracy estimates for all of the Ritz values for use

in the shift selection process. To get these estimates we need to unravel the effects of the

spectral transformation. Throughout we must account for possibly multiple eigenvalues.

Recall that the following relation (14) holds for vibration analysis:

(K - aM)-I My - yO = Qj+IBj+IET s

Therefore, because Q j+l is M-orthogonal,

[]M(K - aM)-'M- My_[[M-1 = [[MQj+IBj+IETs[[M-_

= [[Bj+IETs[[2 - _j.

Note that for each eigenvector s the corresponding flj is the Euclidean norm of the product

of the upper triangular matrix Bj+I with the last p components of s. We apply a theorem

on the error in eigenvalue approximations for the generalized eigenproblem from [31] (pg.

318) to obtain:

1 _[ <_ []M(K-aM)-IMy - My_HM-1 = flj.
(18) IA - o" HMyllM-,

Thus, as in the ordinary eigenproblem, _j is a bound on how well the eigenvalue of Tj

approximates an eigenvalue of the operator to which the Lanczos algorithm is applied. We

now extend this result to a bound on the error IA - v I.

As in Ericsson and Ruhe's analysis [14], we use [_-_-g -01 < _/j to show

1

= 1 0)l

The final inequality follows from the observation that the approximate values 0 are derived

from a projection onto a subspace; thus P is always smaller than the eigenvalue _ it

approximates. Hence

(19) I)_- v[ < _.

This shows how the accuracy requirements are modified by the spectral transformation. For

an eigenvalue A close to the shift a we need only a moderately small _j to guarantee a good
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approximate eigenvalueu because 0 is large. Conversely, eigenvalues far from the shift are

transformed to small values of 8, requiring smaller values of/_j than would otherwise be

expected.

The bound (19) can be improved for well separated eigenvalues. Define the gap 7 as:

7-mini 1 1 .[,

The gap bound theorem from [31](pg. 222) then results in

_i 2

(20) I_- _1_<_-_.

Both bounds (19) and (20) are valid. In general the first is smaller than the second for

clustered eigenvalues and larger for well separated eigenvalues. In our implementation we
use whichever bound is smaller:

8..
(21) IA- _1< min{_ }

- v- ' 02"y

The definition of -y should be modified to account for clusters of eigenvalues; the gap between

sets of multiple eigenvalues is used. In practice we have only an approximation to % which

we derive from the shifted and inverted eigenvalues of Tj.

Similar error bounds can be derived for buckling analysis. Let (u, y) be a computed

eigenpair of (K, Ks). Then

P
0-

b, mO"

and

A

From the fact that

.8
/]m

8-1'

it follows that

.8
A-v = A

8-1

= (e--1-i-1)(_(8-1)-.8)
A

= (e_--!-7)(A-,)(8 A_,)

= (g:-i-)( )(o _ - j).
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Again, weuse the property of the Lanczosalgorithm of approximating eigenvaluesfrom the
inside. When the inversionof the operator is taken into account,the computedeigenvaluesof
the transformedproblemarealwayscloserto onethan the true eigenvaluesof the transformed
problem. Therefore,

i)_- o'[_ 1 1
o- I#- 11 -< [0- 11

The resulting simple error bound for buckling analyses is

Io-_)=/_j.I_- ,_1_ (o-

The analogous refined gap error bound is

I_-_l--- (0- 1)27b,

where % is defined by

A A
% ----min },

As in the vibration case, the lesser of the two bounds

(22) I,,ll)2/_j' I_1/_]%}I),- _1---min{(0- (0- 1)2

is chosen, with the definition of % modified in the presence of multiple eigenvalues.

The spectral transformation preserves the eigenvectors, so there is no need to account

for the transformation visa vis the approximate eigenvectors. However, Ericsson and Ruhe

introduced a correction term [14] that results in improved eigenvector approximations for

the untransformed problem. This was later discovered to have the additional benefit [28] of

ensuring that the computed eigenvectors lie in the proper subspace in cases where the metric

matrix is semidefinite.

Let u = a + -_ be the computed eigenvalue. The correction step is formally one step of

inverse iteration with the computed eigenvector y

(K - aM)_ = My

By (14)

5 = (K- aM)-aMy

= yO + Qj+IBj+IETs.

The vector

1_ 1 T

z = -_z = y + -_Q._+,Bj+IE; s,

36



can be obtained cheaply by adding a linear combination of the next block of Lanczos vectors

to y. This gives a better approximation to the eigenvector of the vibration problem, as

well as ensuring that the approximate eigenvectors are uncontaminated by the effects of a

semidefinite M. The corresponding correction for a semidefinite K in buckling analysis is

given by

1

z = + s.

During the course of the Lanczos algorithm we need to determine whether to continue

or terminate the run. Key to this decision is knowledge of the convergence of the desired

eigenvalues, as estimated by the residual bounds. To evaluate the bounds in (21) or (22) we

need most of the eigenvalues and the corresponding entries in the bottom block row of the

matrix of eigenvectors. Parlett and Nour-Omid [32] have a very efficient algorithm for the

single vector Lanczos algorithm. Block generalizations have yet to be found, so we use a more

straight forward approach. The eigenvalue problem for Tj is solved by reducing the band

matrix Tj to tridiagonal form, and then by applying the tridiagonal QL algorithm. We use

subroutines from EISPACK [16, 40], with slight modifications to obtain only the bottom p

entries of the eigenvectors of Tj. These modifications reduce considerably both computation

and storage requirements for each Lanczos step. Only p2j words are needed as opposed to

(pj)2 for the full eigenvector matrix. We use the corresponding unmodified routines to obtain

the full eigenvectors at the conclusion of a Lanczos run, at which time temporary space used

during the recurrence is available to store the entirety of the eigenvector matrix for T.

4.3. Global Loss of Orthogonality and Reorthogonalization. Up to this point

our discussion of the block Lanczos algorithm has assumed exact arithmetic, but the various

error bounds hold in finite precision as well. It is well-known that the Lanczos algorithm

misbehaves in inexact arithmetic. The most notable characteristic is the global loss of or-

thogonality among the computed Lanczos vectors. We expect Qj to be an M-orthogonal

matrix. In reality, finite precision arithmetic and no reorthogonalization spell disaster for

this assumption. A reasonable correction is to perform limited reorthogonalization to keep

Qj sufficiently close to orthogonal. Our approach is two-fold -- we identify mechanisms

whereby orthogonality is lost and then apply a model of the loss of orthogonaJity to deter-

mine when to correct the situation. In the context of the block shifted Lanczos recurrence,

orthogonality is lost in three different ways. First, there is a loss of orthogonality between

adjacent blocks in Qj, the blocks the recurrence should make orthogonal. This is corrected

by use of local reorthogonalization. Second, the blocks of Qj not explicitly orthogonalized in

the recurrence suffer a global loss of orthogonality. We correct for this with a block version

of partial reorthogonalization. Lastly, it is important that a Lanczos run at some shift not

recompute eigenvectors computed as a result of a previous Lanczos run. We present a new

reorthogonalization scheme, external selective reorthogonalization, to ensure that this does

not occur. Throughout the process our goal is to apply a minimal amount of extra work, par-

ticularly as it requires accessing the entirety of Qj, to maintain at least O(V_)-orthogonality

in Qj.

The fundamental approach is to model the Lanczos recurrence in finite precision. The
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following recurrence is our model of what really happens:

(23) Qj+IBj+I = (K - aM)-IMQj - QjAj - Qj_IB T + F.i.

In this model Fj represents the roundoff error introduced at step j. Then,

T B = QTM(K-aM)-XMQj-QkMQj JQk MQj+I j+l T A

T T QTMFj.-QkMQj-IBj +

Qk MQt, k # 1 would be zero. These quan-Were Qj truly M-orthogonal, all the quantities T

titles cannot be ignored in the presence of roundoff error. For convenience we define

T MWj,k -- Qk Q_,

with which the previous equation becomes

(24) Wj+,,k Bj+x = Q_ M(K - a M)-' MQj - Wj,kAj - Wj-l,k Bf + QT MFj.

This equation is nearly sufficient for our computational purposes. We can easily find

norms for the blocks A t and Bj during the recurrence, and we will compute bounds for all

the other terms except for the first term on the right side of (24). We eliminate Q_M(K -

aM)-IMQj from (24) by obtaining an expression for its transpose by premultiplying the

occurrence of (23) with j = k by QTM:

T
QTM(K- aM)-IMQk = Wj,k+lBk+l + Wk,jAj + W_-,,jB T + Qj MFk.

The obvious substitution then results in

= Bk+_Wj,k+_ +Wj+I,kBj+I T AkWi,k + BkWj,k-1

(25) -Wj,kA, - Wj-I,kBT + Gj,k.

Here Gj,k =-- QTMFj - FTMQj represents the local roundoff error. Formula (25) explains

the global loss of orthogonality. We will use this model to estimate and bound the loss of

orthogonality among the Lanczos vectors, and thereby determine how to correct the loss of

orthogonality.

4.3.1. Monitoring the Loss of Orthogonality. The development of our modeling

procedure has two parts, both based on the bounds available by taking norms of (25):

IlW,+l,kll2-< IIB; lll2(llBk+ 'll21lWj,k+ ll 
+[IBkll llWj, -,ll + IIBjll llWj- ,kll 
+(ll&ll + IIAklI2)IIWj, II2+ IIGj,kll ).

We use this equation to compute a bound wj,k on IIwj,kll at each step.

The first part of our development addresses the bounds wj+l,k for k < j - 1, that is,

for blocks that are not explicitly involved in the orthogonalization of the Lanczos vectors

within the recurrence itself. For these blocks the loss of orthogonalization depends on the
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FIG. 11. Simulation of Loss of Orthogonality (w-recurrence)

Initialize:

e, - epv/-n , where e -roundoff unit, p is the block size

and n = number of degrees of freedom

_M2,1 = _s

Loop:

For j = 3, 4,... do

_Oj+l,j = _s

O.)j÷l,j--1 = _j+l(2_jes + (Otj -[- aj-1)es + _j-lWj,j-2)

For k = 1,...j - 2 do

_j+l,k=/_j+,(Zk+i_j,_+,+/_j,_-, +/_j_,-,,_ + (_j + _k)_,,_)
End

End

loss already incurred at previous steps. Bounds on that loss of orthogonality will be available

to us from previous steps of the simulation given in Figure 10.

The following quantities from the Lanczos recurrence are required for the simulation:

sk _ llAkll2

_k -IIBkll2

_k =- 1/ap(Bk), where ap(Bk) is the smallest singular value of Bk.

In addition, we follow [31, 36, 38] in making a standard assumption on a bound for the error

term IIGj,kll_<-_Pvl-ft. We have as yet left unstated the origin of the two initializing terms

wj+t,j and wj+t,j-1. In examining them we will uncover a particular artifact of the block

Lanczos algorithm. By (25),

Wj+I,j-IBj+I = BTWj, j Jr- Aj-tWj,j-t -_- Sj-lWj,j-2

-Wjj_IAj - Wj-l,j-tBf -1-Gjj-I

= (BTW_,_-W__,,j_,Bf)
+(&__Wj,j_,- Wj,__tAj)
+ B__xW_,__2+ G_,j-I.

By reason of the care with which we compute the QR factorization, we assume that QTMQj =

I + E, where I is the identity matrix and IIEII2 < e,. For reasons discussed below, we can

assume that IIWjj_a 115-< co. From this it follows that

(26) IlWj+t,j-tll2 -< _j+t(2fljeo + (a t + o_j-t)6-s Jv t_j-to)j,j-2).

Notice from (26) that wj+_j-x > /3j+l/3je,. At the next step this term will appear as

_j+2/3jwj+t,j-a; in the following step it will be one of the contributions to /3/+3/3j+awj+2,j.
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Both _j+l and _j+x appear in this last product. The growth of the bound occurs as fast as

x(Bj), where x(Bj) =/_j+l/_j+l is the condition number of Bj. The analysis of the ordinary

Lanczos algorithm has unity corresponding to the term x(Bj), because the condition number

of a non-zero 1 × 1 matrix is always one. The loss of orthogonality occurs more rapidly in

the block Lanczos algorithm, particularly when x(Bj) is significantly larger than one, but

also in general.

A different, but related, analysis can be used to show that the term x(Bj) appears in the

bound for Wj+l,j. This was first observed in [22], where this growth was also actually observed

in the Lanczos recurrence. An inexpensive correction is needed to make the recurrence

useful: at each step a local reorthogonalization between Q j+l and Qj is performed. Because

the Lanczos recurrence is itself just a special form of Gram-Schmidt orthogonalization, local

reorthogonalization can be seen as a simple generalization of the reorthogonalization required

in computing the M-orthogonal factorization of a single block. Local reorthogonalization

ensures that e, orthogonality holds between successive blocks of Lanczos vectors. Note that a

local orthogonalization step is also performed on completion of a partial reorthogonalization.

If storage is not an issue, a local reorthogonalization between Qj+I and Qj-1 should also be

performed, in which the obvious modification should be made to the algorithm for computing

the w-recurrence.

4.3.2. Partial Reorthogonalization. The global loss of orthogonality modeled by

the w-recurrence can be corrected by two different schemes. These are the selective orthog-

onalization scheme of Parlett and Scott [34] and the partial reorthogonalization scheme of

Simon [39]. Selective orthogonalization is an elegant scheme that takes advantage of the

special characteristics of the loss of orthogonality -- orthogonality is lost exactly in the

directions of eigenvectors that have become well-represented in Qj. Selective orthogonal-

ization is implemented in two steps. In the first, the Lanczos recurrence is "interrupted"

when an eigenvector converges. The eigenvector is computed, which requires access to all

previous blocks in Qj. The second step occurs whenever the model indicates orthogonality

is lost again in the direction of the eigenvector. The second step requires that the latest two

Lanczos blocks be reorthogonalized against the computed eigenvector, but does not require

access to preceding blocks of Qj.

Partial reorthogonalization is a simpler, but less elegant, scheme. Whenever the simu-

lation indicates too great a loss of orthogonality, interrupt the recurrence to reorthogonalize

Qj and Q j+l against all preceding blocks. Each step at which reorthogonalization occurs

represents access to all of Qj. For this reason partial reorthogonalization has previously been

recommended for situations in which the eigenvectors were not of any interest (as in solving

sparse linear equations [39]). The extra cost in an application of partial reorthogonaliza-

tion does have an extra payoff; orthogonality is restored against all converged and nearly

converged eigenvectors simultaneously.

Shifting and the block recurrence each accelerate the convergence of eigenpairs. The

simultaneous use of both means that eigenpairs converge very rapidly. Frequently one or

more eigenpairs converge at each block step, once the recurrence is established. In this

circumstance selective orthogonalization has possibly greater requirements for accessing Qj

than does partial reorthogonalization. Selective orthogonalization will require an eigenvector
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computation at almost each step; partial reorthogonalization will occur only every three to

four steps in typical problems. It would be possible to combine the two schemes -- to carry

out partial reorthogonalization during the computation of an eigenvector for selective orthog-

onalization, but it is not clear that the combination would be more effective than partial

reorthogonalization alone. (See [33] for a discussion of these issues for the ordinary Lanc-

zos recurrence.) Table 6 summarizes the reorthogonalization requirements of two extensive

eigencomputations. The number of selective orthogonalization steps given in this table is

the number of block steps at which one or more eigenvalues converge; the number of partial

reorthogonalization steps is the number of block steps at which partial reorthogonalization

was performed.

Our implementation of the Lanczos recurrence is based, therefore, on the block gener-

alization of partial reorthogonalization, based on the block w-recurrence presented above.

The single vector version of this simulation has been shown previously [39] to provide a good

order of magnitude estimate of growth of the loss of orthogonality as well as a bound. We

use the block version to estimate the loss of orthogonality to determine when reorthogonal-

ization is necessary. Previous work [31, 34, 38] indicates that reorthogonalization is needed

whenever

max wj+l,k __ X/t_.
k

The reorthogonalization should be carried out with both of the last two block of vectors

Qj and Qj+I, in order that the next block generated by the recurrence, Qj+2, be strictly

orthogonal to all of its predecessors. This leads to the following partial reorthogonalization

[39] algorithm (Figure 11) for maintaining orthogonality:

FIG. 12. Partial Reorthogonalization

At each Lanczos step, after computing Qj+I and Bj+I do:

Update the w-recurrence as above

Wmax _ maxk Wj+l,k

If w,,a_ >_ x/7 then

For k=l,...j-1 do

Orthogonalize Qj against Qk

Orthogonalize Qj+I against Qk
End

Orthogonalize Qj+I against QJ
Reinitialize w-recurrence:

wj+l,k = wj,k = e,,k = 1,...j

End if

Note that the orthogonalization of Qj and Qi+a involves M-inner products. This requires

the storage of both the Lanczos vectors and their product with M in secondary storage, or,

alternatively, reapplying M to the Lanczos vectors. The appropriate form depends on cost.
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TABLE5
Comparison of Partial and Selective Reorthogonalization

matrix

BCSST_26 _

PLAT1919 b

shift eigen- block partial

values steps reorthog.

steps

1 60 28 9

2 15 20 5

3 37 21 9

4 31 13 3

5 10 10 2

6 26 17 5

7 22 16 5

8 6 3 1

total 207 159

selective

orthog.

steps

20

10

15

8

5

13

11

3

41 83

5

20

9

10

14

22

4

8

16

1

4

28

8

12

8

29

1 8 17 5

2 83 31 8

3 29 17 6

4 24 21 5

5 39 21 6

6 55 31 12

7 8 11 3

8 27 13 3

9 32 25 7

10 1 7 1

11 8 11 4

12 62 35 10

13 24 18 6

14 36 18 8

15 20 16 4

16 74 36 14

total 636 404 102 200

" block size 3, lowest 200 modes

b block size 5, all modes in [.000025, .24]
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4.3.3. External Selective Orthogonalization. A different type of loss of orthogo-

nality occurs in the context of the shifted and inverted Lanczos algorithm. It is possible

that, after computing some eigenvalues with shift al, the same eigenvalues and vectors are

computed again when using a2. This presents a severe complication -- we need a mech-

anism for identifying duplicate copies from different runs. In addition, we waste resources

recomputing eigenvectors. In order to avoid this complication and the duplicate computation

we have developed another reorthogonalization scheme, external selective orthogonalization.

External selective orthogonalization is an efficient way of keeping the current sequence of

Lanczos vectors orthogonal to previously computed eigenvectors, and thereby avoiding the

recomputation of eigenvalues that are already known. External selective orthogonalization

is motivated by the classical selective orthogonalization algorithm [34], but the development

here is entirely new.

In theory it would be sufficient to orthogonalize the starting block against known eigen-

vectors, because this would guarantee that all subsequent Lanczos vectors are orthogonal as

well. Of course this does not hold in practice. A global loss of orthogonality occurs, similar

to the one among the Lanczos vectors themselves; in addition, the computed eigenvector

is not exact. The contribution of both sources of error, which ultimately may lead to the

recomputation of eigenvalues and vectors, is analyzed below.

Let (u, y) be an approximate eigenpair of (K, M). For clarity, denote the current shift as

a_,_. The relationship between the eigenvector y and the Lanczos vectors obtained with the

shift an,_ is found by premultiplying the finite precision recurrence (23) by yTM to obtain

yT MQ_+1Bj+ 1 = yT M( K - anewM)-l MQj - yT MQjAj

(27) --yTMQj_IBT + yTMFj,

which includes the effect of the local error term.

We assume that Bi+I is nonsingular. Then we can obtain a bound on the loss of orthog-

onality between y and Qj by taking norms of both sides of (27):

IlyT MQj+IlI2 <_ IIBf_IlI2(IjyTM( g - a,,,,_M) -1MQjlI2 + IlyTMQjlI211Aj[12

+IlvrMQ -IlI IIBTII,+ IIv*MFjlI ).

As with partial reorthogonalization, we can define a recurrence relation for a quantity

vj to bound the loss of orthogonality between y and the Lanczos vectors. Assuming that

ri >_ IlyTMQ,II2 for i = 1,...,j, we obtain

IIB_lll2(lly T M(K - anewM)-IMQjlI2 + rjlIAjlI2 + rj_IlIBTII2 + IlyT MFjH2 ).

as a bound for the right-hand side of the j + 1-st step. Of the four terms on the right hand

side of this equation, the second and third are easily computed. For the fourth we shall use

the same assumption as before on the size of the local error term: IIFjlI2 < epv/-n. We need

then only to bound the first term [[yTM(K-a,_,,M)-IMQj[[2. The spectral transformations

preserve eigenvectors, so y is also an approximate eigenvector of the spectrally transformed

problem. Define the transformed residual vector z,_, by

1
( K - a,,,_M)-I My y = zn_.

12 -- One w
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Then

1
yTM(K - anewM)-lMQj -

I/ -- O'ne w

T
yTMQj + z,_e,oMQj,

from which it follows that

1
IlyTM( K - (YnewM) -1 MQj - yT MQjA_II2 < I1(

V O'ne w

TI- mj)ll2r_ ÷ IlZ.ewMQ_ll2.

But

IlznTwMQJII5= II(zT_wM1/_)(MX/2Q_)II_

zT M _/_ IIM1/_QYlI2 II_ = z,,_wlIMIIQJlIM T= IIZ._}IM< new 2

Thus, the following simple recurrence for r gives a bound for the loss of orthogonality

observed in (27):

(28) Tj+, = IIB)_,II2(TjlI(_! - &)l12 + T_-'}IBTII_+ I]Z._wIIM+ ePvfh-)-

The same analysis applies to the buckling spectral transformation, where the eigenvector

orthogonality error equation (27) becomes:

yT KQj+IBj+ 1 = yTK(K --anewK6)-l KQj --yTKQjAj

--yTKQj-IBT + yTKFj.

The transformed residual vector Zn,w is

(K - o',,_wK6)-lKy -
12

y = Znew.
V -- (The w

By the same analysis as above, the recurrence for r in the buckling context is

(29) TjA-1 = IIB;-_II=(_JlI(___ Z- &)ll* + rj-IlIBTII2 -4-IIz=_wllK+ _P4"Q-

The recurrences in (28) and (29) provide a mechanism for estimating the loss of or-

thogonality to externally computed eigenvectors, regardless of the source. Each requires

computing the transformed residual vector, z,_w, and its norm, but the recurrence applies

to situations where eigenvectors are known adventitiously. For example, in the vibration

analysis of structures where K is singular, the so-called rigid body modes, the zero eigenval-

ues and vectors, often can be computed at much less cost than a factorization. Typically,

the cost of computing the residual norms for all of the vectors involved in external selective

orthogonalization is less than the cost of one additional step of the Lanczos recurrence.

In the context of a Lanczos code within a larger shifting strategy, it would be attractive

to use the information from the Lanczos recurrence to bound the errors in the computed

eigenvectors and thereby avoid having to compute IIz.o_ll_. The following analysis applies

when the approximate eigenpair (v, y) was computed by the Lanczos code at a previous shift

(Told.
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The approximate eigenpair (v, y) was computed with shift aotd by applying the Ericsson-

Ruhe correction to the pair (v, w). Define the residual vector Zo_d by

where

(K - aoldM) -1My - Ootay = Zotd,

1
Ool d --

V -- aol d

By the Ericsson-Ruhe correction, using Qj+I and Bj+x from the run at aota,

Then

y -_ w "+ _I--_-(_j+IBj+IET,. q.

Vold

(K - aoldM) -1 My - Ootdy =

[(g - aotaM) -1Mw - Oo,dw -- Q_+I Bj+I E T s] +

I (K-aotdM)-'MQj+IBj+IETs.
Oold

But the terms inside square brackets on the right hand side constitute the residual equation

for w and sum to zero; hence,

( K - aotaM)-XMy - OotdY = _-_-_ld(K -- aoldM)-XMQj+IBj+IET s.

If we apply the obvious bound to the right hand side, we find

(30) ]lZoldHM = II(g-aotdM)-lMy--OdaYHM <_ I_+tdlll(g--aoldM)-lMllMflj.

Here IIQ ÷IBj÷IEfslIM <__j is the standard residual bound (18), and we note that _j is

small because we accepted the eigenpair (v, y).

For symmetry, let 0,_ = _.1 A simple relationship between the old shift aotd and
M--O'rlew

residual Zold, and the new shift a,,,,o and residual z,_,_ can be obtained from the untransformed

residual vector• Define d by

Ky - vMy = d.

For any a # v

(K - aM)y + (a - v)My = d,

or

1
My-

l/ -- a
((K-aM)y-d)
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Therefore,for any choiceof (r # v,

(K -- aM)-lMy

1
(K - aM)-lMy y

12--0"

or

1

v_o.(Y-(K-aM)-Xd)

1
(K - aM)-ld

12--0"

For the particular shifts O'old and a,_ we obtain

Zold

Z n _'tjj

1
(K - aoldM)-l d

p -- 0"ol d

1
(K - an_,_M)-ld,

U -- O'ne w

from which it follows that

Zrt_l M -- v - aotd (K - a,_,M)-I(K - aoldM)Zotd,
12 -- O'ne w

This result, together with the definition of z,,,,_, produces

(K - an_M)-l My - On,wy _ v - aotd (K - an_M)-l(K - aoldM)Zold
V -- (The w

_ v - aotd (K - an_,_M) -1
12 -- (The w

( (g - a,_M) + (a,_, - ao_d)M)Zotd

__ V--(7otd (I + (a,_,_ --qold)(g-anewM)-lM)zotd •

12 -- O'ne w

We can bound the norm of this term by

(31)

IIz,_IIM_<
112--_ot"l
I'_-- '_".=1(I+ I_r._ -- _o,dlll(K- CrnewM) -1MIIM)II(K - tr°tdM)-lOo,,MIIMZj.

The two matrix norms in (31) are the norms of the operator matrices to which the Lanczos

algorithm is applied at shifts a,_,_ and aold. Thus, each is estimated by the norms of the

corresponding tridiagonal matrices. It is difficult to see how to use (31) with shift a,,_

because the tridiagonal matrix is being created at the same time in which the bound is

needed.

A context in which this bound may be more useful is when successive Lanczos runs

are made with the same shift. This usually occurs when the Lanczos algorithm is applied

with a block size much smaller than the actual multiplicities of eigenvalues. In such a case,

z,_,_ = Zo,d, and we can use (30) instead of (31):

IIZ-o_IIM-----II(K- O'oldM)-'MllM%.
Oold
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Here, IITo,dll_is availableasanestimateof II(K-aotdM) -1MIIM. Normally one would expect

this to be a reliable estimate, but it is not guaranteed to be so if the largest eigenvalues of

(K- aotaM)-lM are themselves suppressed by selective orthogonalization. The estimate

of II(K - aotaM)-1MII should therefore be taken as the maximum of the largest eigenvalue

of all the (block) tridiagonal matrices produced with this shift, a,,_ = aotd, and of the

spectral transformation of the eigenvalue nearest Crota that is suppressed by external selective

orthogonalization.

This analysis is predicated on the approximate eigenpairs (v, y) of the original problem

holding at least semi-orthogonality amongst themselves. If this assumption is false, it would

be necessary to obtain, via a robust Gram-Schmidt process, an orthogonal basis for the space

spanned by the vectors involved in external selective orthogonalization.

As with partial reorthogonalization, we define a recurrence relation for a quantity Tj

that estimates the loss of orthogonality of the Lanczos vectors with respect to y. In the

recurrence rj is defined be:

(32) 7.j÷1= + Z,7.j-1+

where we set initially 7.o - 0 and 7-1 = epv/ff. The terms/3j and/Jj+l axe defined as in the

w-recurrence. The term a_,_,j -- II(v-a)-lI - AjlI2. The final term 5 is taken to be I[z,_,,,I]M

as explicitly computed or possibly as given by the bound above.

Whenever 7.j+l _> v_ an external selective orthogonalization is performed in order to

ensure that the sequence of Lanczos vectors remains orthogonal to working precision to the

computed eigenvectors. It should be noted that a relatively large residual for the com-

puted eigenvector will cause frequent reorthogonalization, but as noted below, usually only

a very small number of vectors are actually involved. External selective orthogonalization is

implemented as in Figure 12

FIG. 13. External Selective Orthogonalization

Before the Lanczos iteration:

Determine the set of SO-vectors (eigenvectors for selective orthogonalization)

Orthogonalize Q1 against the SO-vectors.

Orthogonalize Q2 against the SO-vectors.

At each Lanczos step j = 3, 4,... do:

Update the 7.-recurrence according to (32) for each SO-vector;

If (Tj has been greater than x/7 or 7.j+1 > V'7 ) then

Orthogonalize Q j+l against y

Set rj+l = e_
End if

It is unnecessary to perform external selective orthogonalization against all previously

computed eigenvectors. From (28, 29) it is evident that one of the main driving forces in

the loss of orthogonality is (v - a) -1. It would appear that loss of orthogonality should
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mostly occur in the direction of eigenvectors corresponding to eigenvalues close to the new

shift. Further, as discussed in §3.3, only a few eigenvectors, again usually those close to

the new shift, need be considered in order to avoid confusing new eigenvectors with old. In

our implementation, we use sentinels to reduce the cost of maintaining orthogonality. The

set of eigenvectors used for external selective orthogonalization is usually the eigenvectors

corresponding to any known eigenvalues closer to the shift than the sentinels . Eigenvalues

beyond the sentinels are discarded in the analysis of the block tridiagonal system.

The effect of using sentinels on the work required for external selective orthogonalization

is more dramatic than is suggested by the analysis above. Although proximity to the shift is

the driving force in the growth of r, neither recurrence (28, 29) begins at e. The term [[z,_,_l[M

is usually near v/L The eigenvalues themselves are only good to the convergence tolerance

(usually d/3 in our code). Further, the spectral transformations preserve eigenvectors, but do

not preserve the property of being the best minimizers for approximate eigenvalues (see [14]

for a discussion of the need to modify the approximate eigenvectors). As a result, external

selective orthogonalization happens more often than we might expect, often at every step

for the eigenpairs nearest the sentinels, which often are the least accurate as well as the ones

nearest the new shift.

Experimental results are shown for two examples in Table 7. The results shown as

"with sentinels" refers to the selection described in §3.3; the results shown as "without

sentinels" uses as SO-vectors all eigenvectors in the intervals between the current shift and

any neighboring trust intervals. The figure given as "cpu cost" includes both cpu time and

i/o processor time. The difference between the costs for the two variations gives only a rough

idea of the added cost for complete selective orthogonalization because the difference in cost

affects the termination decision for each run and thereby changes the choice of shifts.

TABLE 6

External Selective Orthogonalization

matrix

with sentinels

average
number of

S.O. Vectors

total

number of

S.O. Steps

BCSST_26" 1.9 391

PLAT1919 b 3.8 1268

cpu
cost

207

1044

without sentinels

average
number of

S.O. Vectors

total

number of

S.O. Steps

11.0 2106

28.4 6256

cpu

cost

243

1099

a block size 3, lowest 200 modes

b block size 5, all modes in [.000025, .24]

The orthogonalizations involve again both y and My. In order to avoid the repeated

computation of My, all selective orthogonalization vectors are premultiplied by M and the

result is stored on the same random access file as the eigenvectors y. This computation is

performed before the actual Lanczos run begins.

4.3.4. Summary of Reorthogonalization Schemes. We now present in summary

form the reorthogonalized block Lanczos algorithm as used in our production code for solving
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vibration problems. (Buckling analysisdiffers only in using K-orthogonality and in substi-

tuting K_ for M.) Our scheme consists of applying, in turn, external selective, partial and

local reorthogonalization to the result of a single block Lanczos step. The first two schemes

are applied only when the respective model signals a need therefor; each should be applied

before orthogonality is lost badly enough that repeated orthogonalization are needed. The

local reorthogonalization is applied at each step. It may be applied repeatedly, but this

normally occurs only when the recurrence has broken down, which will cause termination.

The integration of these is indicated in Figure 13.

FIG. 14. Block Lanczos Algorithm Preserving Semi-Orthogonality For the Vibration Problem

Initialization:

Set Q0 = 0

Set BI = 0

Choose RI and orthonormalize the columns of R1 to obtain Q1

with QT(MQx)= Ip.

Lanczos Loop:

For j = 1,2,3... do

Set Uj = (K - aM)-X(MQj) - Qj_xB T

Set Aj = UT(MQj)

Set Rj+x = Uj - QjAj

Compute Qj+I and (MQj+x) such that

a) Qj+xSj+l = Rj+x

b) rQj+x(MQj+x)= Ip

Evaluate -),-recurrence for each SO vector and perform selective

orthogonalization if necessary

Evaluate w-recurrence and perform partial reorthogonalization if necessary

Repeat up to p times:

Reorthogonalize Qj+x to Qj

Recompute M-orthogonal factor of Qj+x

Until orthogonal factorization occurs in one step

End loop

4.4. Cost Analysis and Termination of a Lanczos Run. The block Lanczos algo-

rithm exists as part of a larger code, in which each Lanczos run is intended to solve only a

subproblem. In this environment we expect to make a number of Lanczos runs with different
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shifts. There are three ways in which a given Lanczos run can terminate:

1. All eigenvalues required for this subproblem have converged.

2. The Bj+l-block is ill-conditioned or singular. In this case a continuation of the

Lanczos run is either numerically difficult or impossible. Singular or ill-conditioned

Bj+l-blocks can be encountered for the following reasons:

• The shift is very close to an eigenvaiue.

• The effective space of Lanczos vectors is exhausted -- we cannot compute more

orthogonal vectors than the problem has finite eigenvalues.

• Dependencies within the starting block cause a singular B3+1 at some later

stage.

3. Eigenvalues farther from the shift appear to be converging slowly. The estimated

cost for computing them in the current Lanczos run is great enough that a new shift

should be chosen.

The first of these is easy to detect in most cases, assuming that the accuracy of the Ritz

values can be evaluated (§4.2) and that the shift selection has communicated the number of

eigenvalues desired. There is a minor complication in the case for eigenvalues desired closest

to some specified value. We do not know in advance how many eigenvalues are required on

each side of _. Our code is conservative -- at a given shift it looks for as many eigenvalues

as are required to complete the total, even if these may represent more than what is needed

on a single side of _. As a result, we may not terminate as early as would be appropriate

from hindsight.

Breakdown in the recurrence is perhaps more likely than might otherwise be expected.

The first two reasons for breakdown occur in practice; we have never seen the third occur.

The first we try to avoid during the shift selection process; the second occurs primarily

during user evaluation of the code, when it is not uncommon to be faced with problems

like finding all of the eigenvalues of 7 x 7 matrices using a blocksize of 5. In all three cases

breakdown is detected by one of two mechanisms. Either the norm of the residual block

is very small compared to the norm of the diagonal block or the off-diagonal block is ill-

conditioned and presumed rank-deficient. We use a relative norm of 1/x/_ for the first case.

For the second we compute, at each step, the extreme singular values of the off-diagonai

block Bi; we terminate if the condition number of Bi > 1/e. Since we really want only the

condition number of Bi, our use of singular values is perhaps overkill. However, the cost of

a singular value decomposition of a p x p matrix is trivial compared to the cost of an n × n

block solve. There are certainly other options open to us.

The most common reason for termination is that computing more eigenvalues in the

current run is inefficient. This decision to stop is based on a cost analysis that is carried

out at each Lanczos step. The cost analysis assumes that a measure of the real user cost is

available, which is used to monitor the cost of the various operations in the algorithm. This

is used in a model of the Lanczos algorithm, which estimates the total cost of continuing

the Lanczos run beyond the current step. The residual bounds estimating the accuracy

of yet unconverged eigenvalues are monitored step by step; the observed changes are used

to estimate future convergence. We use our model to attempt to locate a point in an

individual run where the average cost per eigenvalue is minimized. This in turn is a heuristic
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attempt to minimize the average cost for all eigenvalues. The effectiveness of the heuristic

is demonstrated later for a particular example in Table 14.

The cost of a Lanczos run depends on a number of parameters. There is usually a

factorization associated with the run. The cost of the factorization is typically the largest

single cost, but it is a one-time cost. Each Lanczos step has several components of cost.

There is a large constant cost per step, comprising the matrix-block solve and multiplication

and other operations in the recurrence. There are costs that increase quadratically in the

number of block steps, notably the cost of the eigenanalysis of Tj. We also expect the cost

of partial reorthogonalization to increase at least quadratically. Partial reorthogonalization

occurs primarily as a function of the nearness of eigenvalues to the shift. Inasmuch as the

eigenvalue nearest the shift is usually the first to converge, and dominates the reappearance

of banished subspaces, the frequency with which partial reorthogonalization is needed is

generally independent of the number of eigenvalues that have converged. There are also

costs that increase cubically, particularly the cost of computing the converged eigenvectors

from the Lanczos vectors, an operation that occurs only after the run terminates.

Normally, eigenvalues far from the shift converge slowly and require a large number

of steps. We expect to see the fastest convergence early, with the number of eigenvalues

converging per step tapering off as the length of the run increases. At first the cost per

eigenvalue decreases rapidly, as the cost of the factorization is divided among the converged

values. Later the other costs of the iteration come to dominate; as the convergence rate slows

and the costs increase, the average cost also increases. Our goal is to stop at the minimum

average cost.

The costs of the various operations vary dramatically from system to system and problem

to problem. A particular concern for a commercial code is input/output cost, normally not

an issue at all for academic analyses. Rather than adopting a simplified model of individual

pieces of the cost, we have made the assumption that the real system cost is available. We

use a cubic model of cost, matching the dependence of the various pieces on j. We obtain a

least squares fit to the real cost over the last 10 steps and use this as a model to predict the

real cost over the new few steps. This model is supplemented by an estimate of the cost of

the post processing that obtains the eigenvectors; this model is based on measurements of

the various pieces that make up the postprocessing as these pieces appear elsewhere in the

recurrence.

The rate of convergence for the as-yet unconverged eigenvalues is estimated by taking

a weighted geometric average of the change in accuracy of the first unconverged Ritz value

over the previous five steps. Based on this, we estimate the number, of Ritz values that will

become accurate enough to be accepted in each of the next four steps. The ratio of the

estimated total cost and the estimate of the number of converged eigenvalues is computed

for each of the next two steps; we continue if that ratio shows a decrease in average cost. To

start the process, we insist that at least ten steps be taken if possible or necessary.

We also use the estimate of the number of eigenvalues converging to decide whether to

continue when only a few eigenvalues remain to be computed. If the estimate is that all the

eigenvalues needed will be accepted in the next four steps, we continue even if the cost per

eigenvalue increases. This is a heuristic to avoid computing a factorization to compute a
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very small numberof eigenvalues.
The schemefor terminating a run describedhere wasdevelopedover a lengthy period

and a large number of experiments. Our experience has been that the cost curve is relatively

flat near its minimum, making the choice of where to stop appear to be somewhat flexible.

This appearance is misleading; the global minimum we are attempting to reach has been

quite sensitive to the local choice. We have chosen to use a scheme that works well for us

on a number of examples -- we expect it to work well in general, but not to be globally

optimal.

To demonstrate the value of a well-tuned dynamic scheme for evaluating cost, we include

results of some simple experiments here. We modified our standard scheme to make it

terminate early by using 150% of the measured costs instead of the real costs.. We maintained

the same estimate of the final termination costs, which has the effect of making it appear

to be cheaper to stop. We also modified the standard scheme to force it to run five steps

beyond where it would normally stop. The results are given in Table 14. These show

dramatic sensitivity to small changes in the stopping procedure.

TABLE 7

Comparison of Variations on Termination Model

matrix

BCSST_26 _

PLAT1919 b

Standard Strategy

shifts block cpu

steps cost

2 55 152

48 807 901

Termination Early

shifts block cpu

steps cost

12 147 242

68 963 1032

Termination Late

shifts block cpu

steps cost

2 56 181

45 824 956

block size 5, lowest 100 modes

block size 3, all modes in [.000025, .24]

4.5. Choice of Blocksize and of Starting Block. The optimal block size for a given

problem varies greatly by problem and computer environment. The two largest benefits of

the block algorithm are in input/output cost reduction and in treating multiple eigenvalues.

However, certain costs, such as obtaining the M-orthogonal factorization and the cost of

the eigenanalysis of Tj increase quadratically with the block size p. In general, if multiple

eigenvalues are expected and the multiplicities are not too large, it is best to choose a block

size as large as the largest expected multiplicity. This is particularly important if many

clusters of eigenvalues are expected (Table 11). A block size of six or seven works well in

problems with rigid body modes. This is not essential (see Tables 19 and 20) and we rarely

find that p > 10 is cost-effective.

The effect of input/output cost is considerable. Within the MacNeal-Schwendler NAS-

TRAN product, which runs on a variety of commercial systems, extensive testing resulted in

a default block size of seven on all systems. Input and output is particularly expensive within

NASTRAN. In an environment in which input/output cost was not measured, a blocksize of

3 was found to be more effective. We provide our results on a small number of experiments

in §5; it is likely that these results would change on other systems.
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It is always attractive to start an iterative method like the Lanczos algorithm with

a good guess at a solution. We begin the first Lanczos run with a randomly generated

starting block. Thereafter, we expect to have the approximate eigenvectors (Ritz vectors)

from unconverged Ritz values available as estimates of the next eigenvectors to be found. At

the time that the eigenvectors of T are available, we do not know where the next shift will be

taken. Therefore, we take a starting block built from all of these Ritz vectors. If t vectors are

available, each column in the starting block is taken to be the sum of t/p Ritz vectors. We fill

the block out randomly when t < p. We adopted this approach after extensive experiments

comparing various choices of starting blocks, including mixtures of Ritz vectors and random

components. We did not find a significant change in the overall cost of the eigensolution in

any of the approaches.

5. Experimental Results. The algorithm described in the paper was developed as

a general purpose eigensolver for The MacNeal-Schwendler Corporation's structural engi-

neering package NASTRAN [18]. One of the goals in the software design was to make the

eigensolver independent of the form of the sparse matrix operations required to represent

the matrices involved and their spectral transformations. The key operations needed are

matrix-block products, triangular block solves, and sparse factorizations. These, and the

data structures representing the matrices, are isolated from the eigensolver. As a result, we

have been able to incorporate this code in a number of different environments.

The eigensolver has been used in MSC NASTRAN with two different approaches to the

sparse linear equations involved, a profile approach and a sparse multifrontal approach. In

both cases the factorization and solve modules are the standard operations of MSC NAS-

TRAN, used directly by the eigensolver. The code has also been incorporated in the PROBE

structural engineering package for the Noetics Corporation (now a subsidiary of MSC), the

ATLAS structural engineering package developed by Boeing, and the alternative NASTRAN

code of Universal Analytics, Inc.. It has also been included in mathematics libraries supplied

by Boeing Computer Services (BCSLIB-EXT) 1 and Convex Computer Corporation (Veclib).

In all of these implementations the sparse linear equations are solved with vectorized multi-

frontal codes based on the work in [2, 3, 4]. The multifrontal code does perform numerical

pivoting as described in [25].

5.1. The Environment for Experiments. The experiments described in this paper

were all performed on a Sun 4/490 workstation with 32 megabytes of main memory. The

code is our standard distribution eigensolver; the required matrix factorization, triangular

solves and matrix-vector products are the codes in BCSLIB-EXT. The codes are all written

in Fortran 77, and were run with the "-O" optimization option of the Sun Fortran compiler.

The optimizer is quite effective with the inner loops of the numerical operations. We note

that our code is always a block code, even when run with block size 1. This means that

our results for block size 1 will be somewhat worse than a single vector code would obt_n.

The major difference would be in the analysis of the tridiagonal system, where the results

of Parlett and Nour-Omid would be available [32], but this would represent only a small

savings in general.

1 BCSLIB-EXT is available at no cost on all Cray Research, Inc. computers.
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The test problems are drawn from the symmetric eigenproblems from the Harwell-Boeing

Test Collection [11]. These problems were chosen for the collection for use in validating codes,

and so often display anomalous or pathological situations. The Harwell-Boeing Test Collec-

tion has not kept up with the dramatic increases in problem sizes and computer horsepower,

at least in the sense of representing production problems. Our code has been used to solve

eigenproblems with more than a million degrees of freedom, but the largest problem in the

test collection is of order 15,000 and most of the problems are much smaller. As a result,

the problem independent costs of the Lanczos algorithm, primarily the analysis of the block

tridiagonal systems, are more important than they would be in large production problems.

For most of the examples, we report the costs of the required eigenanalysis as a function

of block size; we replicated the analyses for block sizes one to six. For the two largest

problems we report the costs in two forms, first in terms of the highest level sparse matrix

primitives, and then as a breakdown in terms of the functional operations of the code. For

the latter we report statistics as outlined in Table 8.

TABLE 8

Cost Statistics

task elements

recurrence

factorization

reorthogonalization

solve (K-aM)Uj = MQj

compute Uj = Uj - Qj-IB T

compute R = Uj - QjAj

LDL T factorization of K - aM

M-orthogonalization of R

local reorthogonalization

external selective orthogonalization

partial reorthogonalization

block tridiagonal eigenanalysis of block tridiagonal matrix at each

block step

eigenvector eigenanalysis of block tridiagonal matrix at final

block step and back transformation with Lanczos

vectors

start up generating M-orthogonal starting block, including

projection into correct subspace and initial exter-

nal selective orthogonalization

shift selection choose new shift

5.2. Some Empirical Examples. Throughout this paper we have used some of the

problems from the Harwell/Boeing test collection [11] to demonstrate particular aspects of

our algorithms. We close by using a slightly larger subset to illustrate some of the global

behavior of the code, particularly as it concerns aspects over which the user exercises con-

trol. We chose six test problems, all but one of which were collected from actual industrial

or research applications. Because ordinary problems are less likely to have been called to
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our attention, these problems are probably unusual. Nonetheless they provide useful demon-

strations.

TABLE 9
Test Problems

nonzeros in

matrix order K M

BCSST_08 1074 7017 1074

BCSST_24 3562 81736 3562

BCSST_25 15439 133840 15439

BCSST_26 1992 16129 1922

BCSST_34 588 11003 12429

PLAT1919 1919 17159 --_

description

television station

Calgary Saddledome

76 story skyscraper

nuclear reactor containment floor

MSC Nastran buckling problem

Atlantic and Indian Oceans

ordinary eigenvalue problem

Two of the problems have been used as the primary examples in this paper. They are

BCSST.26, a model of a nuclear reactor containment floor used for seismic analysis, and

PLAT1919, a finite difference model of tidal currents. These models both were included in

the test collection because of the large number of eigenpairs that were required of each. In

both cases the number of modes is large because the analysis depended on knowing all of the

modes in specified intervals. At the time of their accession to the collection these matrices

represented very large and difficult problems. Increases in computer speeds and the use of

appropriate algorithms make these problems appropriate for contemporary workstations.

Apart from the number of eigenpairs required, the nuclear reactor containment floor

problem appears to have no unusual characteristics. Details of the eigenanalysis, as a function

of blocksize, are given in Table 10. These results exhibit a pattern that is common to all of

the problems: The number of factorizations and Lanczos runs decreases rapidly as the block

size increases; the cost of the eigenanalysis initially decreases as well, but then increases. This

reflects the fact that as the blocksize increases, the length of the Lanczos runs increase in

terms of the dimension of Qi. Longer runs involve greater costs, particularly for maintaining

semi-orthogonality and for the back transformation of the eigenvectors. For these relatively

small matrices, the costs of longer runs begins to dominate the costs of factoring and applying

the matrix operators rather early. For reference a analysis using only a single Lanczos run

with a block size of three had a cost of 671 for this problem, nearly three times the cost of

the analysis with shifting.

The oceanography problem has several additional characteristics that made it sufficiently

interesting to warrant special attention. First, the eigenvalues desired are very much in the

interior of the spectrum. There are 818 eigenvalues above and 465 eigenvalues below the

values we want. This problem was analyzed, without use of the spectral transformation, in

[5, 22]. Without shifting, it was barely possible to compute the eigenvalues in the interval

[.0001, .24]; the eigenvalues in [.000025, .0001] were also of interest, but were impossible to

compute. Secondly, all the eigenvalues, except a singleton at zero, are positive and occur

in pairs. These multiple eigenvalues play havoc with an ordinary, point, Lanczos algorithm.
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TABLE 10

Computation of 200 Eigenvalues from BCSST__6 (Shift Statistics)

block

size

1

2

3

4

5

6

cpu

cost

385

233

253

321

420

348

factor-

izations

44

24

20

14

12

4

number of

runs

75

23

19

13

12

4

block

steps solves

954 1177

357 425

261 317

197 235

183 218

87 98

With either a block size of 1 or 2, it is difficult for a code to be sure that it has exhibited

the full multiplicities of the eigenvalues -- the shifting strategy must be prepared to assist.

Even with shifting, the single vector code of Ericsson and Ruhe [12, 15] was unable to cope

with the multiplicities of the eigenvalues [24].

Table 11 demonstrates a number of effects of the choice of blocksize. It is clearly impor-

tant to choose a blocksize large enough to cope with the multiplicities expected. Blocksizes

of 1 or 2 result in a large number of reruns to pick up second copies of eigenvalues. This

is shown by the discrepancy between the number of factorizations and the number of runs.

Although the reruns incur no new cost for factorizations, the need for a rerun is detected

only when the second end of a subinterval has been used as the shift; this will probably

not be the best shift for the values near the other end of the subinterval. Each of these

reruns also requires more extensive use of external selective orthogonalization than would an

ordinary run. The increase in the number of runs and of external selective orthogonalization

generates unusually high start up costs for these low blocksizes. In addition, the large num-

ber of eigenpairs requested is reflected in unusual costs for eigenvector computation, which

also reflects the heavy input/output cost of this step.

TABLE 11

Computation of 636 Eigenvalues from PLATIgI9 (Shift Statistics)

block

size

1

2

3

4

5

6

cpu

cost

1395

1360

915

968

1187

1282

factor-

izations

95

85

48

29

17

12

number of

runs

209

152

48

29

18

12

block

steps solves

2831 3248

1871 2168

807 901

558 615

393 428

301 324

Three of the problems are rather ordinary. BCSST_08 is a model of a building housing

television studios and other production and administrative facilities. Its claim to fame is
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the presenceof isolateddouble and near triple eigenvalues.At one time it wasconsidered
to havevery closeeigenvalues.The lowest 24 eigenvaluesare given in Table 12. The close
eigenvaluescauserelatively slow convergence,which causesour code to makea number-of
short runs. Details aregivenin Table 13. This problemcanbe solvedeasilyenoughwithout
our elaborateshifting strategy; it wouldappear that our codemay be shifting unnecessarily.
In fact, shifting isappropriate. Weremovedthe costtermination from the recurrence,sothat
the codewould terminate only whenit believesit hascomputedall the requestedeigenvalues.
The cost of doing sowas65.0secondsfor a unit blocksizerun and 99.4secondsfor a block
sizeof three. Shifting can beeffective.

TABLE 12

Lowest 26 Eigenvalues of BCSST_08

i Ai

1 6.900

2 18.14206

3 18.1423664462086

4 18.1423664462086

5 84.78615

6 84.7864335537914

7 84.7864335537914

8 85.54

i Ai

9 91.05

10 93.45

11 130.9

12 131.5

13 132.9

14 136.2

15 137.2

16 138.4

i Ai

17 138.7

18 139.6

19 140.6

20 141.1

21 141.566

22 141.638

23 142.19

24 142.642

TABLE 13

Computation of lowest 20 Eigenvaluesfrom BCSST_O8(ShiflStatistic O

block

size
cpu
cost

41.8

35.4

31.3

31.1

38.0

47.0

factor-

izations

11

6

4

4

4

4

number of

runs

11

6

4

3

3

3

block

steps solves

123 151

66 83

46 57

36 44

34 42

34 42

BCSST_24 is a structural model of the Olympia Hockey Arena in Calgary, Alberta,

Canada. The main interest in this model is the fact the eigenanalysis of this particular

model confirmed the need for a redesign of the structure prior to construction. Table 14

gives summary statistics, while Table 15 gives the detailed breakdown of cost.

The only unusual aspect of these analyses is that the eigenvalues of this problem, al-

though not particularly close in general, are close enough that more than a single run is used

for smaller blocksizes. The 26 lowest eigenvalues are given in Table 16; there is one near-pair

of eigenvalues, but the rest are singletons. The poor performance for blocksize one is proba-

bly due to an artifact of the program that is not tuned to the unit blocksize case. The code
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TABLE 14

Computation of lowest 20 Eigenvalues from BCSST_24 (Shift Statistics)

block

size
cpu

cost

351

125

123

139

148

143

factor-

izations

10

3

2

3

2

2

number of

runs

16

3

2

2

2

1

block

steps solves

179 226

42 50

33 38

24 29

24 29

17 19

TABLE 15

Computation of lowest _0 Eigenvalues from BCSST_24 (Cost Breakdown)

Percent of Cost of Eigenextraction

block recur- factor- re- block eigen- start shift

size rence ization orthog, tridiag, vector up select.

1

2

3

4

5

6

27

37

45

38

45

41

53

44

3O

40

25

26

6

8

14

11

15

18

0

0

1

1

1

2

11

6

4

5

5

3

i

1

2

3

4

5

6

7

8

9

TABLE 16

Lowest _6 eigenvalues of BCSST__4

4.33

9.47

11.8

14.1

17.5

20.4

20.8

23.8

27.6

i Ai

10 29.7

11 36.1

12 37.5

13 37.6

14 39.0

15 40.8

16 41.6

17 47.1

18 51.9

i

19

20

21

22

23

24

25

26

)_i

54.8

58.0

60.9

63.0

63.1

66.17

66.24

76.0
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is forced to take a minimum of ten steps in each run that does not break down, but the code

will stop if no eigenvalue has converged in those ten steps nor appears likely to do so in the

next two steps. The standard Lanczos recurrence does not obtain rapid enough convergence

on this problem to prevent this from occurring, but probably would work adequately if more

steps were taken.

BCSST_34 is a buckling problem obtained from The MacNeal Schwendler Corporation,

as an example with eigenvalues of both signs. (The other buckling problems in the collection

happen to be of structures that had not yet buckled -- all the eigenvalues are positive.)

Table 17 describes the shifts taken for three different specifications of modes. The lowest

positive eigenvalue is 5.595 x 103; the smallest negative mode is -2.012 × 104.

TABLE 17

Shift History for BCSST_34, block size 3

problem

lowest 10 modes

lowest mode

shift

-8.78 × 101

-3.16 × 104

2.93 × 104

-8.78 x 101

7.34 x 103

-2.36 x 104

number of

steps

19

10

5

10

7

9

eigenvalues

11

0

2

lowest negative mode -8.78 x101 10 0

-2.36 x 104 7 1

BCSST_25 is a seismic model of the Columbia Center, a 76 story skyscraper in Seattle,

Washington. This model was collected in 1981, at which time it was too large to be run

in-core on any computer available to the authors. It is a sign of the progress in computing

that ten years later this problem can be solved on engineering workstations. We continue

to retain this problem because it is pathologically difficult. The lowest 132 eigenvalues are

listed in Table 18. For reference, the largest eigenvalue of this structure is 1.51 x l0 s.

The smallest eigenvalues are nearly negligible when compared to the largest eigenvalue

and they are very close to one another. Our code determines clusters of eigenvalues based

on its accuracy tolerance, which defaults to 2.31 x 10 -11 in IEEE arithmetic. We apply this

tolerance to the transformed eigenvalues, which are not close enough to be treated as a cluster

or even as two clusters and four isolated values. (Note that if we applied the tolerance to the

untransformed eigenvalues, all of these values would be a cluster, which is not appropriate.)

As a result this problem counters our usual shifting strategy -- in this case we must take a

shift very close to the eigenvalues in order to overcome the very poor separation and slow

convergence. This situation, eigenvalues almost, but not quite in a cluster, represents a

worst case. When run in default mode (10 lowest eigenvalues, no information on location),

our code is able to resolve the four lowest modes, but our attempts to avoid shifting directly

on an eigenvalue prevent it from shifting close enough to resolve the next two "clusters"

before it terminates on a fail-sake mechanism. (Five consecutive runs are unable to resolve

any of the missing "six" eigenvalues, although they do compute some of the higher modes.)
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Lowest

TABLE 18

132 Eigenvalues of BCSST_25

i

1

2

3

4

5

68

69

132

)li

9.6140 x 10 -a

9.7948 x 10 -4

9.7961 x 10 -4

9.8380 x 10 -4

9.85801 x 10 -4

9.85803 x 10 -4

9.86240 x 10 -4

9.86243 x 10 -4

These runs do provide enough inertia information to locate the lowest 132 modes in the

interval [9.5 x 10 -4, 9.9 x 10-4]. The experiments in the Tables 19 and 20 axe follow-on runs

using that location information. The failure with block size 1 demonstrates the extra power

of the block algorithm. (This problem can be run with block size 1 by choosing interval

specifications yet closer to the eigenvalues.)

TABLE 19

Computation of 132 Eigenvalues from BCSST_25 (Shift Statistics)

block

size
cpu

cost

failed

6381

3417

3725

4115

8339

factor-

izations

number of

steps

69

295

116

100

81

134

runs

5

17

5

5

4

8

5

17

5

5

4

8

block

solves

82

344

129

113

92

158

5.3. Summary. The results in the previous section illustrate some of the characteristics

of the shifted block Lanczos algorithm. Only problems BCSST_24 and BCSST_25 are large

enough to begin to demonstrate the behavior of the algorithm on large problems. We can

make some general statements about the change in the behavior as problem sizes increase.

We expect to see the cost of the factorization and linear equation solutions to increase

faster than linearly. Assuming that the eigenvalue distributions do not change, the cost of

reorthogonalization, of generating the starting block and of the eigenvector computation will

increase linearly with the change in problem size. The block tridiagonal eigenanalysis and

the shift selection should remain constant and their contributions to cost will become even
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TABLE 20

Computation of lowest 182 Eigenvalues from BCSST_25 (Cost Breakdown)

Percent of Cost of Eigenextraction

block recur- factor- re- block eigen- start shift

size rence ization orthog, tridiag, vector up select.
27

31

32

30

30

46

25

23

17

17

13

27

28

37

36

4

13

13

13

6

9

2

2

2

12

smaller. We note that the cost of the necessary reorthogonalizations is an important fraction

of the cost -- this is a strong argument for preserving only serni-orthogonality rather than

complete orthogonality. We remind the reader that our cost measures include a factor for

input/output traffic, an essential ingredient in preserving semi-orthogonality.

The reader will see the difficulty in making an a priori choice of blocksize. The advan-

tages of the block algorithm are clearly demonstrated, but there is no optimal choice for

block size. A choice of three is always good on these problems on our Sun workstation, but

is likely to be less than optimal for a vibration problem with six rigid body modes. Systems

that impose higher costs for input/output will make higher blocksizes more effective. So will

larger problem sizes, because the additional costs imposed by larger blocksizes are in terms

that are independent of the problem size.

These issues should be kept in the perspective of the power of the spectral transforma-

tion. None of the problems described here is solvable in any practical sense using the naive

reduction to standard form. For example, the oceanography problem, PLAT1919, was ana-

lyzed in [5, 22] without any transformation -- what were really the desired eigenvalues were

not close to appearing after N steps. (In unreported experiments, 3N steps had resulted

in little improvement.) Although it is possible to solve some of the simpler problems by

inverting the problem, as in (2), this is clearly not sufficient for all of the problems. The

oceanography problem, PLAT1919, is singular, so some nontrivial shift is required. Even

with a shift at the lower endpoint, .000025, a single Lanczos run to compute the 200 eigen-

values above this point had a cost of 6637 (for blocksize 5). In contrast, our standard shifted

code had a cost of 1187 for computing all 636 desired eigenvalues with the same blocksize.

The Columbia Center model has the same characteristics. The naive reduction would re-

sult in a problem with separations of 10 -x3 for the "well-separated" eigenvalues; even the

simple reciprocal transformation would be clearly inadequate to begin to solve this prob-

lem. It is only with the combined power of the block Lanczos algorithm and the spectral

transformation that we can solve these problems in a reasonable time.
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A. Matrix Inertias. We need to interpret the number of negative eigenvalues of K -

crM and K - _rK6 in terms of the eigenvalues of the original vibration or buckling problems.

The result we want to prove is:
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Interpretation of v(K - aM) or v(K - aK6)

vibration analysis:

M positive definite # of eigenvalues < a

M positive semidefinite (# of eigenvalues < a) + 3'

0 some cases3' = dim(A/'(M)) other cases

buckling analysis:

K positive definite

K positive semidefinite

# of eigenvalues in (0, a) or (a, 0)

(# of eigenvalues in (0, a) or (a, 0)) + 3'

0 a of one sign3' = dim(N(g)) a of other sign

From this we conclude that:

v(K - a2M) - v(K -a,M) = number of eigenvalues in (al,a2)

where we assume that a2 > al. In the case of buckling analyses we further assume that both

al and a2 have the same sign.

There are four cases, which will be considered in pairs. In all cases we assume that

the problem is a well-posed generalized symmetric eigenproblem, i.e., that there exists some

linear combination aK + _M that is positive definite.

A.1. Kx = AMx with M positive definite. We can apply the obvious reduction

to standard form. The eigenvalues of Kx = AMx are the same as the eigenvalues of C =

L_KLM T, where LM is the Cholesky factor of M. It follows that the number of eigenvalues

of C less than a is the same as the number of eigenvalues of Kx = )tMx less than a. But

C - aI is congruent to LM(C - aI)L T and this is simply K - aM. Thus, the number of

negative terms in the decomposition of K - aM is the number of eigenvalues less than a.

Obviously, the interpretation of the inertia has the same meaning here as in the ordinary

eigenvalue problem.

A.2. Kx = AMx with M positive semidefinite. The problem in which M is singular

is more complex, in that signs must be assigned to the infinite eigenvalues. Suppose that

M is positive semidefinite, with p zero eigenvalues wl,w2,... ,cap = O, and n -p positive

eigenvalues wp+l,...,w,. M is a symmetric matrix, so it has an eigendecomposition

M = S_-_S T.

Let the nonsingular matrix W be defined by

W = _S T,

where q_ is the diagonal matrix with ¢ii= 1 for i = 1,2,...,p and ¢, = 1/v/'_ for i =

p + 1,..., n. Then the eigenvalues of

KX = MXA
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are the same as the eigenvalues of

WKWTy = WMWTyA,

where Y = w-Tx. By definition of W,

WMWT = _sT s_'_sT s_,

which, because S is orthogonal, reduces to

WMW T _= _t_.

By the construction of _, _fl_, and hence WMW T, is the two by two block partitioned

matrix

(000I),
where I is an (n -p) x (n -p) identity matrix. Partition WKW r = C conformally as

Cll CT
C_1 C22 ] "

Let y be an eigenvector of (WKWT)y = A(WMWT)y, partitioned conformally as [y_, y2]T.

Then y is an eigenvector if and only if

Cllyl + cTy2 = 0(33)

and

(34) C21yl + 622y2 = )_y2.

Under the assumption that some linear combination aK + _M is positive definite, it follows

that a(WKW T) +_(WMW T) is positive definite. But a positive definite matrix has positive

definite principal minors, and the (1,1) block of the transformed linear combination is aCll

(a is clearly not zero because M is not definite). Therefore, Cll is a definite matrix, certainly

nonsingular. Equation (33) then implies that

C-1C TYl =- 11 21Y2.

Substituting in (34), we obtain

(C,, - C2,CS'Cr)y2 = Ay2.

Thus, the finite eigenvalues of Kx = AMx are the eigenvalues of the Schur complement of

Cll in C.

By Sylvester's theorem the inertia of (K - aM) is the same as the inertia of WKW T -

o'WMW T. But the partitioned form of the LDL T decomposition of WKW T - aWMW T
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has as its (1,1) block the decomposition of Cu, and as its (2,2) block the decomposition of

(C22- C21C_1C_)- hi. (C22- C21C_xC_)- crI is the valuable part of the decomposition,

but the inertia for the entire matrix is offset by the inertia of the (1,1) block. The offset

is constant - it describe the sign given to the infinite eigenvalues. That all of the infinite

eigenvalues have the same sign is due to the fact that a positive definite linear combination

of K and M exists, that is, that the problem is a generalized symmetric eigenproblem[13].

The difference between v(K - aiM) and v(K - a_M) will still be the number of eigenvalues

in [al, a2), since the constant term cancels.

Further, in vibration analysis, we know that both K and M are positive semidefinite.

It follows that both a and /3 will be positive when M is only semidefinite. The positive

semidefiniteness of K then implies that C11 is a positive definite matrix, so v(C11) = 0.

Thus, the inertia of the factored matrix retains the exact same meaning for the positive

semidefinite vibration case as for the positive definite case.

A.3. Kx = _K6x with K positive definite. In buckling analysis, we do not have any

definiteness properties for Ks but we do for K. The assumption that K is positive definite

allows us to invert the problem. Thus

Kx = _K6x

implies

K6x = (1/._)Kx = #Kx,

and all the eigenvalues # in the second equation are finite. This transformed problem is

in the standard (K6, K) form in which the right hand side matrix, K, is positive definite.

We will apply our previous analysis to determine the number of eigenvalues of (Ks, K) that

lie in the image of the interval of interest in the original problem. Thus, to determine the

number of eigenvalues of Kx = )_Ksx less than a, we will instead determine the number of

eigenvalues of the inverted problem (Ks, K) in the interval(s) in the variable p = 1/_ that

corresponds to the interval (-co, a) in the variable )_.

There are three subcases that must be considered. The first is the case a = 0. But

the interval (-co, 0) for )_ is mapped to the interval (-co, 0) in 1/)_. Thus, the number of

negative eigenvalues of Kx = )_Ksx is the same as the number of eigenvalues of (Ks, K) less

than 0. By the standard result above, this is simply the number of negative eigenvalues of

Ks, v(gs).
The second case is the case a < 0. The transformation from )_ to 1/)_ transforms a to

1/a. The number of eigenvalues in (-co, a) is the same as the number of eigenvalues of

(Ks, K) in the interval (l/a, 0). By our previous results this is

v(K6) - v(K6 - (1/a)K),

which, because a is negative, is the same as

v(K6)-v(K-aK6).
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Note that the numberof eigenvaluesbetweena and 0 is simply v(K - aK6).

The third case is a > 0. In this case, the interval (-c_, a) in A must be treated as the

union of the interval (-_,0) and the interval [0, a). There are v(Ks) eigenvalues in the

first subinterval. The second subinterval is transformed into (1/cr, +cx)). This is

v(Ks) + zr(K6 - (1/a)K)

or

v(Ks) + v( K - <7Ks ).

It follows even in this case that v(K - o'Ks) is the number of eigenvalues between 0 and a.

The buckling problem will have infinite eigenvalues if K6 is singular. However, the

signs of these eigenvalues are irrelevant to the interpretation of the inertias because the

interpretation always considers only finite subintervals.

A.4. Kx = AKsx with K positive semidefinite. The most general case we consider

is a buckling analysis in which K is only positive semidefinite. For this case to be a symmetric

generalized problem there must exist some pair (a, 8) with aK +/_Ks positive definite. By

the positive semidefiniteness of K, we may assume that a is 1. (We can add any positive

multiple of K without changing the positive definiteness of the sum.) We will combine the

analysis for the M semidefinite case together with the positive definite buckling case above

to obtain similar results. The difficulty in this case is that we need to assign signs to the

zero eigenvalues.

We assign signs to the zero eigenvalues by redoing the analysis of §A.2, applying the same

reductions to K instead of M. K is a symmetric matrix, so it has an eigendecomposition

K --- _:r,

A A A

with p zero eigenvalues Wl,&=22,... ,_p = 0, and n - p positive eigenvalues _.Op+l,... ,lz n. As

before, let the nonsingular matrix W be defined by

W=

where _ is the diagonal matrix with ¢i"_ = 1 for i = 1,2,... ,p and ¢,__ = 1/x/_ for i =

p + 1,..., n. Then the eigenvalues of

KX = KsXA

are the same as the eigenvalues of

where Y = w-Tx. Again
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reduces to

(0 0)_WKrWT=_Ft_'= 0 I "

Partition WK6W T = E conformally as

Let y be an eigenvector of (_rKWT)y = )t(_'K6WT)y, partitioned conformally as [yl,y2] T.

Then y is an eigenvector if and only if

(35) Ellyl + ETy2 = 0

and

A(E21yl + E22)y2 = Y2.

As before the (1,1) block of the transformed linear combination, _Ell, is a positive definite

matrix. Equation (35) then implies that

-1 T
Yl = --Ell E21y2,

or

- )V:= w.

Thus, the finite, nonzero, eigenvalues of Kx = AK6x are the reciprocals of the nonzero

eigenvalues of the Schur complement of Ell in E.

The partitioned form of the LDL T decomposition of _rK_rT -- a_VK6W w has as its

(1,1) block the decomposition of -aE11, and as its (2,2) block the decomposition of I -

a(E22 - E21E_ET). The Schur complement block is in the form of §A.3, since the identity

matrix is clearly positive definite. Again, the inertia of the full matrix is the inertia of

I - a(E22 - E21Eb_E T) offset by the inertia of the (1,1) block. Notice that the offset

depends on the sign of the shift - it describes the signs of the eigenvalues of -aEn. Because

Ell is definite, either all the eigenvalues of -aEn are positive or all are negative. Thus, the

offset will be zero for shifts of one sign and nonzero for shifts of the other sign. Still, the

difference between v(g -a_K6) and v(g -a2Ks) will still be the number of eigenvalues in

[_1, a2), as long as both shifts have the same sign.

Unfortunately v(Ell) does interfere with the interpretation of the number of eigenvalues

between a and 0 for shifts on one side of the origin. However, v(En) is the dimension of the

nullspace of K, a quantity that is often known adventitiously. If not, it can be estimated

by factoring K - pI, where p is chosen smaller than the least nonzero eigenvalue of K, but

large enough so that the factorization is stable.
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